模型融合

来源:互联网 发布:排序算法总结 java 编辑:程序博客网 时间:2024/04/20 19:52

模型融合

有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同。无论是出于要通过ensemble提升性能的目的,还是要设计特殊作用的网络,在用Caffe做工程时,融合都是一个常见的步骤。
比如考虑下面的场景,我们有两个模型,都是基于resnet-101,分别在两拨数据上训练出来的。我们希望把这两个模型的倒数第二层拿出来,接一个fc层然后训练这个fc层进行融合。那么有两个问题需要解决:1)两个模型中的层的名字都是相同的,但是不同模型对应的权重不同;2)如何同时在一个融合好的模型中把两个训练好的权重都读取进来。
Caffe中并没有直接用于融合的官方工具,本文介绍一个简单有效的土办法,用融合模型进行ensemble的例子,一步步实现模型融合。

完整例子

模型定义和脚本:
https://github.com/frombeijingwithlove/dlcv_for_beginners/tree/master/random_bonus/multiple_models_fusion_caffe
预训练模型:
https://github.com/frombeijingwithlove/dlcv_book_pretrained_caffe_models/blob/master/mnist_lenet_odd_iter_30000.caffemodel
https://github.com/frombeijingwithlove/dlcv_book_pretrained_caffe_models/blob/master/mnist_lenet_even_iter_30000.caffemodel
虽然模型只是简单的LeNet-5,但是方法是可以拓展到其他大模型上的。

模型(及数据)准备:直接采用预训练好的模型

本文的例子要融合的是两个不同任务的模型:
对偶数0, 2, 4, 6, 8分类的模型
对奇数1, 3, 5, 7, 9分类的模型
采用的网络都是LeNet-5
直接从上节中提到的本文例子的repo下载预定义的模型和权重。
上一部分第一个链接中已经写好了用来训练的LeNet-5结构和solver,用的是ImageData层,以训练奇数分类的模型为例:

name: "LeNet"layer {  name: "mnist"  type: "ImageData"  top: "data"  top: "label"  include {    phase: TRAIN  }  transform_param {    mean_value: 128    scale: 0.00390625  }  image_data_param {    source: "train_odd.txt"    is_color: false    batch_size: 25  }}layer {  name: "mnist"  type: "ImageData"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    mean_value: 128    scale: 0.00390625  }  image_data_param {    source: "val_odd.txt"    is_color: false    batch_size: 20  }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  convolution_param {    num_output: 20    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "conv2"  type: "Convolution"  bottom: "pool1"  top: "conv2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  convolution_param {    num_output: 50    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "ip1"  type: "InnerProduct"  bottom: "pool2"  top: "ip1"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 500    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "relu1"  type: "ReLU"  bottom: "ip1"  top: "ip1"}layer {  name: "ip2"  type: "InnerProduct"  bottom: "ip1"  top: "ip2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 5    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "ip2"  bottom: "label"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "ip2"  bottom: "label"  top: "loss"}

训练偶数分类的prototxt的唯一区别就是ImageData层中数据的来源不一样。

模型(及数据)准备:Start From Scratch

当然也可以自行训练这两个模型,毕竟只是个用于演示的小例子,很简单。方法如下:

第一步 下载MNIST数据

直接运行download_mnist.sh这个脚本

第二步 转换MNIST数据为图片

运行convert_mnist.py,可以从mnist.pkl.gz中提取所有图片为jpg

import osimport pickle, gzipfrom matplotlib import pyplot# Load the datasetprint('Loading data from mnist.pkl.gz ...')with gzip.open('mnist.pkl.gz', 'rb') as f:    train_set, valid_set, test_set = pickle.load(f)imgs_dir = 'mnist'os.system('mkdir -p {}'.format(imgs_dir))datasets = {'train': train_set, 'val': valid_set, 'test': test_set}for dataname, dataset in datasets.items():    print('Converting {} dataset ...'.format(dataname))    data_dir = os.sep.join([imgs_dir, dataname])    os.system('mkdir -p {}'.format(data_dir))    for i, (img, label) in enumerate(zip(*dataset)):        filename = '{:0>6d}_{}.jpg'.format(i, label)        filepath = os.sep.join([data_dir, filename])        img = img.reshape((28, 28))        pyplot.imsave(filepath, img, cmap='gray')        if (i+1) % 10000 == 0:            print('{} images converted!'.format(i+1))

第三步 生成奇数、偶数和全部数据的列表

运行gen_img_list.py,可以分别生成奇数、偶数和全部数据的训练及验证列表:

import osimport sysmnist_path = 'mnist'data_sets = ['train', 'val']for data_set in data_sets:    odd_list = '{}_odd.txt'.format(data_set)    even_list = '{}_even.txt'.format(data_set)    all_list = '{}_all.txt'.format(data_set)    root = os.sep.join([mnist_path, data_set])    filenames = os.listdir(root)    with open(odd_list, 'w') as f_odd, open(even_list, 'w') as f_even, open(all_list, 'w') as f_all:        for filename in filenames:            filepath = os.sep.join([root, filename])            label = int(filename[:filename.rfind('.')].split('_')[1])            line = '{} {}\n'.format(filepath, label)            f_all.write(line)            line = '{} {}\n'.format(filepath, int(label/2))            if label % 2:                f_odd.write(line)            else:                f_even.write(line)

第四步 训练两个不同的模型

就直接训练就行了。Solver的例子如下:

net: "lenet_odd_train_val.prototxt"test_iter: 253test_initialization: falsetest_interval: 1000base_lr: 0.01momentum: 0.9weight_decay: 0.0005lr_policy: "step"gamma: 0.707stepsize: 1000display: 200max_iter: 30000snapshot: 30000snapshot_prefix: "mnist_lenet_odd"solver_mode: GPU

注意到test_iter是个奇怪的253,这是因为MNIST的验证集中奇数样本多一些,一共是5060个,训练随便取个30个epoch,应该是够了。

制作融合后模型的网络定义

前面提到了模型融合的难题之一在于层的名字可能是相同的,解决这个问题非常简单,只要把名字改成不同就可以,加个前缀就行。按照这个思路,我们给奇数分类和偶数分类的模型的每层前分别加上odd/和even/作为前缀,同时我们给每层的学习率置为0,这样融合的时候就可以只训练融合的全连接层就可以了。实现就是用Python自带的正则表达式匹配,然后进行字符串替换,代码就是第一部分第一个链接中的rename_n_freeze_layers.py:

import sysimport relayer_name_regex = re.compile('name:\s*"(.*?)"')lr_mult_regex = re.compile('lr_mult:\s*\d+\.*\d*')input_filepath = sys.argv[1]output_filepath = sys.argv[2]prefix = sys.argv[3]with open(input_filepath, 'r') as fr, open(output_filepath, 'w') as fw:    prototxt = fr.read()    layer_names = set(layer_name_regex.findall(prototxt))    for layer_name in layer_names:        prototxt = prototxt.replace(layer_name, '{}/{}'.format(prefix, layer_name))    lr_mult_statements = set(lr_mult_regex.findall(prototxt))    for lr_mult_statement in lr_mult_statements:        prototxt = prototxt.replace(lr_mult_statement, 'lr_mult: 0')    fw.write(prototxt)

这个方法虽然土,不过有效,另外需要注意的是如果确定不需要动最后一层以外的参数,或者原始的训练prototxt中就没有lr_mult的话,可以考虑用Caffe的propagate_down这个参数。把这个脚本分别对奇数和偶数模型执行,并记住自己设定的前缀even和odd,然后把数据层到ip1层的定义复制并粘贴到一个文件中,然后把ImageData层和融合层的定义也写入到这个文件,注意融合前需要先用Concat层把特征拼接一下:

name: "LeNet"layer {  name: "mnist"  type: "ImageData"  top: "data"  top: "label"  include {    phase: TRAIN  }  transform_param {    mean_value: 128    scale: 0.00390625  }  image_data_param {    source: "train_all.txt"    is_color: false    batch_size: 50  }}layer {  name: "mnist"  type: "ImageData"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    mean_value: 128    scale: 0.00390625  }  image_data_param {    source: "val_all.txt"    is_color: false    batch_size: 20  }}...### rename_n_freeze_layers.py 生成的网络结构部分 ###...layer {  name: "concat"  bottom: "odd/ip1"  bottom: "even/ip1"  top: "ip1_fused"  type: "Concat"  concat_param {    axis: 1  }}layer {  name: "ip2"  type: "InnerProduct"  bottom: "ip1_fused"  top: "ip2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 10    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "ip2"  bottom: "label"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "ip2"  bottom: "label"  top: "loss"}

分别读取每个模型的权重并生成融合模型的权重

这个思路就是用pycaffe进行读取,然后按照层名字的对应关系进行值拷贝,最后再存一下就可以,代码如下:

import syssys.path.append('/path/to/caffe/python')import caffefusion_net = caffe.Net('lenet_fusion_train_val.prototxt', caffe.TEST)model_list = [    ('even', 'lenet_even_train_val.prototxt', 'mnist_lenet_even_iter_30000.caffemodel'),    ('odd', 'lenet_odd_train_val.prototxt', 'mnist_lenet_odd_iter_30000.caffemodel')]for prefix, model_def, model_weight in model_list:    net = caffe.Net(model_def, model_weight, caffe.TEST)    for layer_name, param in net.params.iteritems():        n_params = len(param)        try:            for i in range(n_params):                net.params['{}/{}'.format(prefix, layer_name)][i].data[...] = param[i].data[...]        except Exception as e:            print(e)fusion_net.save('init_fusion.caffemodel')

训练融合后的模型

这个也没什么好说的了,直接训练即可,本文例子的参考Solver如下:

net: "lenet_fusion_train_val.prototxt"test_iter: 500test_initialization: falsetest_interval: 1000base_lr: 0.01momentum: 0.9weight_decay: 0.0005lr_policy: "step"gamma: 0.707stepsize: 1000display: 200max_iter: 30000snapshot: 30000snapshot_prefix: "mnist_lenet_fused"solver_mode: GPU
0 0