Linux解析设备树生成设备的过程

来源:互联网 发布:4g 网络手机 编辑:程序博客网 时间:2024/04/26 06:56
  1. 设备树的populate过程大致有如下几个阶段一、根据设备树创建device node链表start_kernel    ---> setup_arch            ---> unflatten_device_tree在u-boot或者lk引导内核的时候,会将设备树在物理内存中的物理起始地址传递给Linux内核,然后Linux内核在函数unflatten_device_tree中会解析设备树镜像,并利用扫描到的信息创建由device node构成的链表,全局变量of_root指向链表的根节点,设备树的每个节点都会有一个struct device_node与之对应。二、遍历device node链表,创建并注册platform_devicestart_kernel    ---> rest_init            ---> kernel_init                    ---> kernel_init_freeable                            ---> do_basic_setup                                    ---> do_initcalls在do_initcalls函数中,kernel会依次执行各个initcall函数,在这个过程中,会调用 customize_machine,具体如下:static int __init customize_machine(void){    /*     * customizes platform devices, or adds new ones     * On DT based machines, we fall back to populating the     * machine from the device tree, if no callback is provided,     * otherwise we would always need an init_machine callback.     */    of_iommu_init();    if (machine_desc->init_machine)        machine_desc->init_machine();#ifdef CONFIG_OF    else        of_platform_populate(NULL, of_default_bus_match_table,                    NULL, NULL);#endif    return 0;}arch_initcall(customize_machine);在arch/arm/mach-msm/board-8909.c中:DT_MACHINE_START(MSM8909_DT,    "Qualcomm Technologies, Inc. MSM 8909 (Flattened Device Tree)")    .map_io = msm8909_map_io,    .init_machine = msm8909_init,    .dt_compat = msm8909_dt_match,    .reserve = msm8909_dt_reserve,    .smp = &msm8916_smp_ops,MACHINE_END所以,machine_desc->init_machine();调用的实际是msm8909_init函数:static void __init msm8909_init(void){    struct of_dev_auxdata *adata = msm8909_auxdata_lookup;    /*     * populate devices from DT first so smem probe will get called as part     * of msm_smem_init.  socinfo_init needs smem support so call     * msm_smem_init before it.     */    of_platform_populate(NULL, of_default_bus_match_table, adata, NULL);    msm_smem_init();    if (socinfo_init() < 0)        pr_err("%s: socinfo_init() failed\n", __func__);    msm8909_add_drivers();}通过of_platform_populate函数来生成platform_device,具体调用过程:of_platform_populate->of_platform_bus_create->of_platform_device_create_pdata->of_device_add那么Linux系统是怎么知道哪些device node要注册为platform_device,哪些是用于i2c_client,哪些是用于spi_device?of_platform_populate根据参数of_default_bus_match_table来判断创建设备的类型,它的定义如下:const struct of_device_id of_default_bus_match_table[] = {    { .compatible = "simple-bus", },    { .compatible = "simple-mfd", },#ifdef CONFIG_ARM_AMBA    { .compatible = "arm,amba-bus", },#endif /* CONFIG_ARM_AMBA */    {} /* Empty terminated list */};    如果某个device node的compatible属性的值与数组of_default_bus_match_table中的任意一个元素的compatible的值match,那么这个device node的child device node仍旧会被注册为platform_device。备注:对于compatible属性的值是arm,primecell的节点有些特殊,它是单独处理的。of_platform_populate:   int of_platform_populate(struct device_node *root,               const struct of_device_id *matches,               const struct of_dev_auxdata *lookup,               struct device *parent)   {       struct device_node *child;       int rc = 0;       // 如果传递进来的参数root为NULL,那么需要通过of_find_node_by_path函数找到device tree中的根节点。 //得到根节点之后呢,就需要通过这个根节点来遍历device tree中的节点了。       root = root ? of_node_get(root) : of_find_node_by_path("/");         if (!root)           return -EINVAL;           for_each_child_of_node(root, child) { // 遍历root device node的child device node           rc = of_platform_bus_create(child, matches, lookup, parent, true);           if (rc) {               of_node_put(child);               break;           }       }       of_node_set_flag(root, OF_POPULATED_BUS);           of_node_put(root);       return rc;   }of_platform_bus_create :   static int of_platform_bus_create(struct device_node *bus,                     const struct of_device_id *matches,                     const struct of_dev_auxdata *lookup,                     struct device *parent, bool strict)   {       const struct of_dev_auxdata *auxdata;       struct device_node *child;       struct platform_device *dev;       const char *bus_id = NULL;       void *platform_data = NULL;       int rc = 0;           /* Make sure it has a compatible property */       //strict为真时,只有包含"compatible"属性的node节点才会生成相应的platform_device结构体//        if (strict && (!of_get_property(bus, "compatible", NULL))) {            pr_debug("%s() - skipping %s, no compatible prop\n",                __func__, bus->full_name);           return 0;       }        //通过设备节点查找名称和platform_data       auxdata = of_dev_lookup(lookup, bus);         if (auxdata) {           bus_id = auxdata->name;           platform_data = auxdata->platform_data;       }       //单独处理compatible属性值是arm,primecell的节点。       if (of_device_is_compatible(bus, "arm,primecell")) {           /*            * Don't return an error here to keep compatibility with older            * device tree files.            */           of_amba_device_create(bus, bus_id, platform_data, parent);           return 0;       }                                                                                                                         //根据device node创建 platform_device并注册       dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);        判断是否需要遍历该设备节点下的子节点,前提是该节点的“compatible”和of_default_bus_match_table结构体中的数据匹配                        if (!dev || !of_match_node(matches, bus))            return 0;       遍历这个device node下的child device node,递归调用节点解析函数,为子节点继续生成platform_device结构体       for_each_child_of_node(bus, child) {           pr_debug("   create child: %s\n", child->full_name);           rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);           if (rc) {               of_node_put(child);               break;           }       }       of_node_set_flag(bus, OF_POPULATED_BUS);       return rc;   }    在of_platform_bus_create函数中,参数strict用于指明设备节点是否需要有compatible属性。如果strict属性为真,首先是需要确定节点是否有  "compatible"属性,如果没有"compatible"属性,则直接返回,即不会创建platform设备的。这样可以把chosen、aliases、memory等没有compatible  属性的节点排除在外。  如果"compatible"属性值有"arm,primecell",则会调用of_amba_device_create函数去创建amba_device,这个设备暂时也不知道是一个什么设备,那么这里还是先忽略。继续,调用of_platform_device_create_pdata函数:static struct platform_device *of_platform_device_create_pdata(                      struct device_node *np,                      const char *bus_id,                      void *platform_data,                      struct device *parent)  {      struct platform_device *dev;        if (!of_device_is_available(np) ||          of_node_test_and_set_flag(np, OF_POPULATED))          return NULL;        dev = of_device_alloc(np, bus_id, parent);      if (!dev)          goto err_clear_flag;        of_dma_configure(&dev->dev);      dev->dev.bus = &platform_bus_type;      dev->dev.platform_data = platform_data;        /* We do not fill the DMA ops for platform devices by default.      * This is currently the responsibility of the platform code      * to do such, possibly using a device notifier      */        if (of_device_add(dev) != 0) {          platform_device_put(dev);          goto err_clear_flag;      }        return dev;    err_clear_flag:      of_node_clear_flag(np, OF_POPULATED);      return NULL;  }  可以看到,这个函数才是真正创建platform_device的。首先调用of_device_is_available函数,这个函数主要用于检测"status"属性,如果没有"status"属性或者属性的值为"okay"或"ok",返回true,否则返回false。所以"status"属性就是用来检测是否可用,其实就是用来确认是否需要创建platform设备。"status"属性检测完毕了,则要调用of_device_alloc函数来为platform_device分配内存了。struct platform_device *of_device_alloc(struct device_node *np,                    const char *bus_id,                    struct device *parent)  {      struct platform_device *dev;      int rc, i, num_reg = 0, num_irq;      struct resource *res, temp_res;        dev = platform_device_alloc("", -1);      if (!dev)          return NULL;        /* count the io and irq resources */      while (of_address_to_resource(np, num_reg, &temp_res) == 0)          num_reg++;      num_irq = of_irq_count(np);        /* Populate the resource table */      if (num_irq || num_reg) {          res = kzalloc(sizeof(*res) * (num_irq + num_reg), GFP_KERNEL);          if (!res) {              platform_device_put(dev);              return NULL;          }            dev->num_resources = num_reg + num_irq;          dev->resource = res;          for (i = 0; i < num_reg; i++, res++) {              rc = of_address_to_resource(np, i, res);              WARN_ON(rc);          }          if (of_irq_to_resource_table(np, res, num_irq) != num_irq)              pr_debug("not all legacy IRQ resources mapped for %s\n",                   np->name);      }        dev->dev.of_node = of_node_get(np);      dev->dev.parent = parent;        if (bus_id)          dev_set_name(&dev->dev, "%s", bus_id);      else          of_device_make_bus_id(&dev->dev);        return dev;  }  调用platform中的platform_device_alloc函数来分配内存。内存申请了之后,还会对platform_device做一些初始化,例如IO、中断资源等等。首先是调用of_address_to_resource和of_irq_count去计算io和中断资源的个数。int of_address_to_resource(struct device_node *dev, int index,                 struct resource *r)  {      const __be32    *addrp;      u64     size;      unsigned int    flags;      const char  *name = NULL;        addrp = of_get_address(dev, index, &size, &flags);      if (addrp == NULL)          return -EINVAL;        /* Get optional "reg-names" property to add a name to a resource */      of_property_read_string_index(dev, "reg-names", index, &name);        return __of_address_to_resource(dev, addrp, size, flags, name, r);  }  首先调用of_get_address获取地址信息。const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,              unsigned int *flags)  {      const __be32 *prop;      unsigned int psize;      struct device_node *parent;      struct of_bus *bus;      int onesize, i, na, ns;        /* Get parent & match bus type */      parent = of_get_parent(dev);      if (parent == NULL)          return NULL;      bus = of_match_bus(parent);      bus->count_cells(dev, &na, &ns);      of_node_put(parent);      if (!OF_CHECK_ADDR_COUNT(na))          return NULL;        /* Get "reg" or "assigned-addresses" property */      prop = of_get_property(dev, bus->addresses, &psize);      if (prop == NULL)          return NULL;      psize /= 4;        onesize = na + ns;      for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)          if (i == index) {              if (size)                  *size = of_read_number(prop + na, ns);              if (flags)                  *flags = bus->get_flags(prop);              return prop;          }      return NULL;  }  首先是找到它的parent,然后根据parent去找bus。static struct of_bus *of_match_bus(struct device_node *np)  {      int i;        for (i = 0; i < ARRAY_SIZE(of_busses); i++)          if (!of_busses[i].match || of_busses[i].match(np))              return &of_busses[i];      BUG();      return NULL;  }  of_busses定义如下:static struct of_bus of_busses[] = {  #ifdef CONFIG_OF_ADDRESS_PCI      /* PCI */      {          .name = "pci",          .addresses = "assigned-addresses",          .match = of_bus_pci_match,          .count_cells = of_bus_pci_count_cells,          .map = of_bus_pci_map,          .translate = of_bus_pci_translate,          .get_flags = of_bus_pci_get_flags,      },  #endif /* CONFIG_OF_ADDRESS_PCI */      /* ISA */      {          .name = "isa",          .addresses = "reg",          .match = of_bus_isa_match,          .count_cells = of_bus_isa_count_cells,          .map = of_bus_isa_map,          .translate = of_bus_isa_translate,          .get_flags = of_bus_isa_get_flags,      },      /* Default */      {          .name = "default",          .addresses = "reg",          .match = NULL,          .count_cells = of_bus_default_count_cells,          .map = of_bus_default_map,          .translate = of_bus_default_translate,          .get_flags = of_bus_default_get_flags,      },  };  在of_match_bus函数中,如果前面的bus不匹配,则使用默认的"default" bus,注意它的addresses字段为"reg"。回到of_get_address函数中,调用of_get_property函数去读取哪个属性呢,就是前面的addresses值的属性,即reg属性,所以reg属性就是用来定义io地址地址信息的。而io地址的长度是通过of_get_address中的of_read_number去读取完成的,最后返回这个io地址。回到of_address_to_resource函数中,在得到这个io地址之后,调用__of_address_to_resource函数将io地址转换成struct resource资源信息。然后是中断资源。int of_irq_count(struct device_node *dev)  {      struct of_phandle_args irq;      int nr = 0;        while (of_irq_parse_one(dev, nr, &irq) == 0)          nr++;        return nr;  }    int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)  {      struct device_node *p;      const __be32 *intspec, *tmp, *addr;      u32 intsize, intlen;      int i, res = -EINVAL;        pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);        /* OldWorld mac stuff is "special", handle out of line */      if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)          return of_irq_parse_oldworld(device, index, out_irq);        /* Get the reg property (if any) */      addr = of_get_property(device, "reg", NULL);        /* Try the new-style interrupts-extended first */      res = of_parse_phandle_with_args(device, "interrupts-extended",                      "#interrupt-cells", index, out_irq);      if (!res)          return of_irq_parse_raw(addr, out_irq);        /* Get the interrupts property */      intspec = of_get_property(device, "interrupts", &intlen);      if (intspec == NULL)          return -EINVAL;        intlen /= sizeof(*intspec);        pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);        /* Look for the interrupt parent. */      p = of_irq_find_parent(device);      if (p == NULL)          return -EINVAL;        /* Get size of interrupt specifier */      tmp = of_get_property(p, "#interrupt-cells", NULL);      if (tmp == NULL)          goto out;      intsize = be32_to_cpu(*tmp);        pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);        /* Check index */      if ((index + 1) * intsize > intlen)          goto out;        /* Copy intspec into irq structure */      intspec += index * intsize;      out_irq->np = p;      out_irq->args_count = intsize;      for (i = 0; i < intsize; i++)          out_irq->args[i] = be32_to_cpup(intspec++);        /* Check if there are any interrupt-map translations to process */      res = of_irq_parse_raw(addr, out_irq);   out:      of_node_put(p);      return res;  }  我们看在of_irq_parse_one函数中,是查找的"interrupts"属性值。回到of_device_alloc函数,还是通过前面的of_address_to_resource函数将io地址资源赋值给平台设备,通过of_irq_to_resource_table函数将中断号转换成中断资源信息并赋值给平台设备。int of_irq_to_resource_table(struct device_node *dev, struct resource *res,          int nr_irqs)  {      int i;        for (i = 0; i < nr_irqs; i++, res++)          if (!of_irq_to_resource(dev, i, res))              break;        return i;  }    int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)  {      int irq = irq_of_parse_and_map(dev, index);        /* Only dereference the resource if both the      * resource and the irq are valid. */      if (r && irq) {          const char *name = NULL;            memset(r, 0, sizeof(*r));          /*          * Get optional "interrupt-names" property to add a name          * to the resource.          */          of_property_read_string_index(dev, "interrupt-names", index,                            &name);            r->start = r->end = irq;          r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));          r->name = name ? name : of_node_full_name(dev);      }        return irq;  }  我们可以看出在of_device_alloc函数中除了为平台设备分配内存之外,还为平台设备找到了io地址资源和中断资源。回到of_platform_device_create_pdata函数中,平台设备已经申请好了,然后对平台设备继续进行赋值操作,例如平台设备的总线赋值为平台总线,平台设备的私有数据赋值为platform_data,最后调用of_device_add函数将平台设备注册到内核中。 三、注册其他设备I2C设备的注册1)platform bus用于挂载和CPU通过系统总线连接的各类外设。I2C控制器直接从属于platform bus,我们在linux kernel中常说的I2C driver,都是指I2C controller driver,都是以platform driver的形式存在,当然,对应的控制器是platform device。2)与此同时,kernel抽象出I2C bus(/sys/bus/i2c),用于挂载和I2C controller通过I2C总线连接的各个I2C slave device。3)比较特殊的地方是,I2C core使用一个虚拟实体----I2C adapter,抽象I2C controller有关的功能(主要是数据的收发),I2C    adapter也挂载在I2C bus上。4)I2C adapter和I2C slave device都挂载在I2C bus上,就可以方便的进行Master(I2C adapter)和Slave之间的匹配操作,   并通过I2C core提供的统一接口,访问I2C salve device,进行数据的收发。    i2c控制器在i2c驱动模型中被抽象为i2c_adapter,但是i2c控制器驱动实际上是在platform_bus上,所以i2c控制器对应的是platform_device,因此会在上面调用of_platform_populate时注册,然后i2c控制器驱动的probe函数会被调用。probe函数中调用注册adapter的函数接口:i2c_add_numbered_adapter ---> i2c_add_adapter ---> i2c_register_adapter ---> of_i2c_register_devices,在函数of_i2c_register_devices中会遍历这个adapter对应的device node的child device node。然后调用of_i2c_register_device,这个函数根据每个child device node的信息构造i2c_board_info,并调用i2c_new_device,在i2c_new_device中会创建并注册i2c_client,注册i2c_client的时候如果找到了对应的设备驱动程序,设备驱动程序的probe函数就会被调动。SPI设备的注册    由于SPI驱动模型跟I2C类似,spi_device的注册过程也跟i2c_client的很类似。spi控制器在spi子系统中被抽象为spi_master,spi控制器驱动实际上也在platform_bus上,所以spi控制器对应的是platform_device。当调用of_platform_populate注册spi控制器对应的platform_device的时候,spi控制器驱动的probe函数会被执行,在probe函数中会向spi子系统注册spi_master。probe函数中调用devm_spi_register_master ---> spi_register_master ---> of_register_spi_devices,在of_register_spi_devices中会遍历与这个spi_master对应的device node的child device node,这些child device node就是挂在spi bus上的板级外设,如spi接口的存储器等等。然后调用of_register_spi_device,根据每个child device node的信息创建spi_device,并调用spi_add_device完成注册,注册spi_device的时候如果找到了对应的设备驱动程序,设备驱动程序的probe函数就会被调动。 其他platform device的注册在上面说如果在of_platform_populate的时候如果给matches传递了of_default_bus_match_table,那么跟matches匹配的device_node的直接child device node会也会自动被注册为platform_device。假如跟matches不匹配的话,这个device_node的直接child device node不会被再被处理了。比如像下面的设备树结构: / {     #address-cells = <0x2>;     #size-cells = <0x2>;     model = "Qualcomm Technologies";     compatible = "qcom,msm8996";     interrupt-parent = <0x1>;      soc {         compatible = "simple-bus";          qcom,msm-dai-mi2s {             compatible = "qcom,msm-dai-mi2s";              qcom,msm-dai-q6-mi2s-quat {                 compatible = "qcom,msm-dai-q6-mi2s";             };         };     }; };  如上,节点"qcom,msm-dai-mi2s"会被注册为platform_device,而其child device node是"qcom,msm-dai-q6-mi2s-quat",并不会被注册为platform_device。  如果此时需要把"qcom,msm-dai-q6-mi2s-quat"也注册为 platform_device的话,也可以在"qcom,msm-dai-mi2s"对应的platform device_driver在被probe的  时候重新调用of_platform_populate。如下: static int msm_dai_mi2s_q6_probe(struct platform_device *pdev) {     int rc;     rc = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);     if (rc) {         dev_err(&pdev->dev, "%s: failed to add child nodes, rc=%d\n",             __func__, rc);     } else         dev_dbg(&pdev->dev, "%s: added child node\n", __func__);     return rc; }  static int msm_dai_mi2s_q6_remove(struct platform_device *pdev) {     return 0; }  static const struct of_device_id msm_dai_mi2s_dt_match[] = {     { .compatible = "qcom,msm-dai-mi2s", },     { } };  MODULE_DEVICE_TABLE(of, msm_dai_mi2s_dt_match);  static struct platform_driver msm_dai_mi2s_q6 = {     .probe  = msm_dai_mi2s_q6_probe,     .remove = msm_dai_mi2s_q6_remove,     .driver = {         .name = "msm-dai-mi2s",         .owner = THIS_MODULE,         .of_match_table = msm_dai_mi2s_dt_match,     }, }; 其中,在第4行又重新调用了of_platform_populate,它的第一个参数是"qcom,msm-dai-mi2s"的device node,通过这个就可以遍历其child device node,并将其注册为platform device。