[吴恩达 DL]Class1 Week2 神经网络基础 + 逻辑回归代码实现

来源:互联网 发布:html5 modernizer.js 编辑:程序博客网 时间:2024/04/20 06:08

本周的内容主要围绕逻辑回归二分类问题展开,针对逻辑回归的定义,损失函数,梯度下降优化,向量化等知识点进行讲解。分课程笔记及代码实现两部分进行讲解。

一 课程笔记

1.结构


logistic regression

即给定x,求

y^=Py=1|x(1)

y^=σ(z)=σ(wTx+b)(2)

其中,

σ(z)=11+ez

这里写图片描述

可以看出
- 当z为很大的正值时,σ(z)趋近于1
- 当z为很大的负值时,σ(z)趋近于0

2. 损失函数

2.1 Loss function

对于一个样本来说,其loss function为:

L(y^,y(i))=y(i)log(y^)(1y(i))log(1y^)(3)

其中,y^为预测值,y 为实际值(0或1)。
上面的公式可以这样理解:

  • If y=1, L(y^,y(i))=log(y^), 这时希望y^尽可能大(趋近1)
  • If y=0, L(y^,y(i))=log(1y^),这时希望y^尽可能小(趋近0)

2.2 Cost function

Cost function实际为所有样本Loss function之和:

J=1mi=1mL(a(i),y(i))(4)

在实际训练过程中,我们希望Cost function尽可能小。

3. 逻辑回归中的梯度下降

逻辑回归的梯度下降可以这样理解:

  1. 首先初始化逻辑回归模型中的参数(w,b)
  2. 利用y^=σ(z)=σ(wTx+b)求出预测值,利用cost function计算损失,求出梯度dw,db
  3. 更新参数:w=w-αdw;b=b-αdb
  4. 重复2,3步直至寻找到合适的w,b

二 代码实现这里写图片描述

整个过程计算过程如下:

  1. 导入train_set和test_set,了解数据格式(如train_set_x(m,num_px,num_px,3))
  2. 对数据进行预处理:
    (1) 将图片数据展开(num_px,num_px,3) ———> (num_px*num_px*3,1)
    (2) 标准化数据集
    train_set_x = train_set_x_flatten/255.
    test_set_x = test_set_x_flatten/255.
  3. 初始化参数(w,b)
  4. 前向传播,计算cost,反向传播
    (1)前向传播:A=σ(wTX+b)=(a(0),a(1),...,a(m1),a(m))
    (2)计算Cost:J=1mmi=1y(i)log(a(i))+(1y(i))log(1a(i))
    (3)反向传播梯度计算:
    dw=Jw=1mX(AY)T

    db=Jb=1mi=1m(a(i)y(i))
  5. 更新参数:w=w-αdw;b=b-αdb
  6. 预测:
    输入(X, w, b)
    输出(Y_prediction)
  7. 整合模型:
    输入(X_train, Y_train,X_test, Y_test, w, b, num_iterations, learning_rate, print_cost)
    输出(多个参数组合而成的字典)


以下为具体代码:

1.import packages

import numpy as npimport matplotlib.pyplot as pltimport h5pyimport scipyfrom PIL import Imagefrom scipy import ndimagefrom lr_utils import load_dataset%matplotlib inline

2.导入数据

def load_dataset():    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels    classes = np.array(test_dataset["list_classes"][:]) # the list of classes    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
# Loading the data (cat/non-cat)train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()# train_set_x ---------- (209,64,64,3)  209张图片# train_set_y ---------- (1,209)# test_set_x  ---------- (50,64,64,3)   50张图片# test_set_y  ---------- (1,50)# Example of a pictureindex = 25plt.imshow(train_set_x_orig[index]) # 显示第(index+1)张图片print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")# np.squeeze 将[1]变为1

3.对数据进行预处理

# 提取样本个数,相片宽度/高度m_train = train_set_x_orig.shape[0]m_test = test_set_x_orig.shape[0]num_px = train_set_x_orig.shape[1]# Reshape the training and test examplestrain_set_x_flatten = train_set_x_orig.reshape(m_train, num_px * num_px * 3).Ttest_set_x_flatten = test_set_x_orig.reshape(m_test, num_px * num_px * 3).T# Standardize our datasettrain_set_x = train_set_x_flatten/255.test_set_x = test_set_x_flatten/255.

4.初始化参数(初始化为0)

def initialize_with_zeros(dim):    """    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.    Argument:    dim -- size of the w vector we want (or number of parameters in this case)    Returns:    w -- initialized vector of shape (dim, 1)    b -- initialized scalar (corresponds to the bias)    """    ### START CODE HERE ### (≈ 1 line of code)    w = np.zeros((dim,1))    b = 0    ### END CODE HERE ###    #声明矩阵维度    assert(w.shape == (dim, 1))    assert(isinstance(b, float) or isinstance(b, int))    return w, b

5.Propagate:前向,Cost,反向

def propagate(w, b, X, Y):    """    Implement the cost function and its gradient for the propagation explained above    Arguments:    w -- weights, a numpy array of size (num_px * num_px * 3, 1)    b -- bias, a scalar    X -- data of size (num_px * num_px * 3, number of examples)    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)    Return:    cost -- negative log-likelihood cost for logistic regression    dw -- gradient of the loss with respect to w, thus same shape as w    db -- gradient of the loss with respect to b, thus same shape as b    Tips:    - Write your code step by step for the propagation. np.log(), np.dot()    """    m = X.shape[1]    # FORWARD PROPAGATION (FROM X TO COST)    ### START CODE HERE ### (≈ 2 lines of code)    A = sigmoid(np.dot(w.T, X) + b)                                    # compute activation    cost = -1./m * np.sum(Y * np.log(A) + (1-Y) * np.log(1-A))                                 # compute cost    ### END CODE HERE ###    # BACKWARD PROPAGATION (TO FIND GRAD)    ### START CODE HERE ### (≈ 2 lines of code)    dw = 1./m * np.dot(X ,(A-Y).T)    db = 1./m * np.sum(A-Y, axis=1, keepdims= True)    ### END CODE HERE ###    assert(dw.shape == w.shape)    assert(db.dtype == float)    cost = np.squeeze(cost)    assert(cost.shape == ())    grads = {"dw": dw,             "db": db}    return grads, cost

6.Optimize:利用dw,db更新参数

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):    """    This function optimizes w and b by running a gradient descent algorithm    Arguments:    w -- weights, a numpy array of size (num_px * num_px * 3, 1)    b -- bias, a scalar    X -- data of shape (num_px * num_px * 3, number of examples)    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)    num_iterations -- number of iterations of the optimization loop    learning_rate -- learning rate of the gradient descent update rule    print_cost -- True to print the loss every 100 steps    Returns:    params -- dictionary containing the weights w and bias b    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.    Tips:    You basically need to write down two steps and iterate through them:        1) Calculate the cost and the gradient for the current parameters. Use propagate().        2) Update the parameters using gradient descent rule for w and b.    """    costs = []    for i in range(num_iterations):        # Cost and gradient calculation (≈ 1-4 lines of code)        ### START CODE HERE ###         grads, cost = propagate(w, b, X, Y)        ### END CODE HERE ###        # Retrieve derivatives from grads        dw = grads["dw"]        db = grads["db"]        # update rule (≈ 2 lines of code)        ### START CODE HERE ###        w = w - learning_rate * dw        b = b - learning_rate * db        ### END CODE HERE ###        # Record the costs        if i % 100 == 0:            costs.append(cost)        # Print the cost every 100 training examples        if print_cost and i % 100 == 0:            print ("Cost after iteration %i: %f" %(i, cost))    params = {"w": w,              "b": b}    grads = {"dw": dw,             "db": db}    return params, grads, costs

7.predict:根据输入x及优化所得的w,b ——->y_prediction

def predict(w, b, X):    '''    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)    Arguments:    w -- weights, a numpy array of size (num_px * num_px * 3, 1)    b -- bias, a scalar    X -- data of size (num_px * num_px * 3, number of examples)    Returns:    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X    '''    m = X.shape[1]    Y_prediction = np.zeros((1,m))    w = w.reshape(X.shape[0], 1)         # 为什么还要在加一次声明    # Compute vector "A" predicting the probabilities of a cat being present in the picture    ### START CODE HERE ### (≈ 1 line of code)    A = sigmoid(np.dot(w.T, X) + b)      # (1, m)    ### END CODE HERE ###    for i in range(A.shape[1]):        # Convert probabilities A[0,i] to actual predictions p[0,i]        ### START CODE HERE ### (≈ 4 lines of code)        Y_prediction = np.floor(A + 0.5)        ### END CODE HERE ###    assert(Y_prediction.shape == (1, m))    return Y_prediction

8.Merge all to a model()

def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):    """    Builds the logistic regression model by calling the function you've implemented previously    Arguments:    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()    print_cost -- Set to true to print the cost every 100 iterations    Returns:    d -- dictionary containing information about the model.    """    ### START CODE HERE ###    # initialize parameters with zeros (≈ 1 line of code)    w, b = initialize_with_zeros(X_train.shape[0])    # Gradient descent (≈ 1 line of code)    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)    # Retrieve parameters w and b from dictionary "parameters"    w = parameters["w"]    b = parameters["b"]    # Predict test/train set examples (≈ 2 lines of code)    Y_prediction_test = predict(w, b, X_test)    Y_prediction_train = predict(w, b, X_train)    ### END CODE HERE ###    # Print train/test Errors    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))    d = {"costs": costs,         "Y_prediction_test": Y_prediction_test,          "Y_prediction_train" : Y_prediction_train,          "w" : w,          "b" : b,         "learning_rate" : learning_rate,         "num_iterations": num_iterations}    return d

因此,当你获得一个训练集及测试集时,只需执行

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

而要对一个新图片进行预测时,则可执行

## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "my_image.jpg"   # change this to the name of your image file ## END CODE HERE ### We preprocess the image to fit your algorithm.fname = "images/" + my_image # 路径 + 文件名image = np.array(ndimage.imread(fname, flatten=False))my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).Tmy_predicted_image = predict(d["w"], d["b"], my_image)plt.imshow(image)print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")

9.画出learning curve(cost 随 iteration 的变化)

# Plot learning curve (with costs)costs = np.squeeze(d['costs'])plt.plot(costs)plt.ylabel('cost')plt.xlabel('iterations (per hundreds)')plt.title("Learning rate =" + str(d["learning_rate"]))plt.show()
原创粉丝点击