C语言排序详解

来源:互联网 发布:奇葩的淘宝评价 编辑:程序博客网 时间:2024/04/26 07:34

转自:http://hi.baidu.com/%B7%E7%BC%C5%BA%AE/blog/item/f972d61d66b3965843a9ada5.html


/*
=============================================================================
相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):
1、稳定排序和非稳定排序

简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就
说这种排序方法是稳定的。反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,
a2,a3,a5就不是稳定的了。

2、内排序和外排序

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

4、几种排序算法的比较和选择

    1. 选取排序方法需要考虑的因素:

    (1) 待排序的元素数目n;

    (2) 元素本身信息量的大小;

    (3) 关键字的结构及其分布情况;

    (4) 语言工具的条件,辅助空间的大小等。

    2. 小结:

    (1) 若n较小(n <= 51),则可以采用直接插入排序或直接选择排序。由于直接插入排序所需的记录移动操作较直接选择排序多,因而当记录本身信息量较大时,用直接选择排序较好。

    (2) 若文件的初始状态已按关键字基本有序,则选用直接插入或冒泡排序为宜。

    (3) 若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序法中被认为是最好的方法。

    (4) 在基于比较排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程,由此可以证明:当文件的n个关键字随机分布时,任何借助于\"比较\"的排序算法,至少需要O(nlog2n)的时间。

    (5) 当记录本身信息量较大时,为避免耗费大量时间移动记录,可以用链表作为存储结构。


================================================================================
*/


/*
================================================
功能:选择排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。算法复杂度O(n2)--[n的平方]

 初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
第四趟排序后 13 27 38 49 [49 97 65 76]
第五趟排序后 13 27 38 49 49 [97 97 76]
第六趟排序后 13 27 38 49 49 76 [76 97]
第七趟排序后 13 27 38 49 49 76 76 [ 97]
最后排序结果 13 27 38 49 49 76 76 97
=====================================================
*/
void select_sort(int *x, int n)
{
    int i, j, min, t;

    for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/
    {
        min = i; /*假设当前下标为i的数最小,比较后再调整*/
        for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/
        {
            if (*(x+j) < *(x+min))
            {   
                min = j; /*如果后面的数比前面的小,则记下它的下标*/
            }
        }  

        if (min != i) /*如果min在循环中改变了,就需要交换数据*/
        {
            t = *(x+i);
            *(x+i) = *(x+min);
            *(x+min) = t;
        }
    }
}


/*
================================================
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。

直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]

 [初始关键字] [49] 38 65 97 76 13 27 49
    J=2(38) [38 49] 65 97 76 13 27 49
    J=3(65) [38 49 65] 97 76 13 27 49
    J=4(97) [38 49 65 97] 76 13 27 49
    J=5(76) [38 49 65 76 97] 13 27 49
    J=6(13) [13 38 49 65 76 97] 27 49
    J=7(27) [13 27 38 49 65 76 97] 49
    J=8(49) [13 27 38 49 49 65 76 97]
=====================================================
*/
void insert_sort(int *x, int n)
{
    int i, j, t;

    for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
    {
        /*
           暂存下标为i的数。注意:下标从1开始,原因就是开始时
           第一个数即下标为0的数,前面没有任何数,单单一个,认为
           它是排好顺序的。
         */
        t=*(x+i);
        for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
        {
            *(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
        }

        *(x+j+1) = t; /*找到下标为i的数的放置位置*/
    }
}


/*
================================================
功能:冒泡排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。

下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。

冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]

49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97
=====================================================
*/

void bubble_sort(int *x, int n)
{
    int j, k, h, t;

    for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
    {
        for (j=0, k=0; j<h; j++) /*每次预置k=0,循环扫描后更新k*/
        {
            if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/
            {
                t = *(x+j);
                *(x+j) = *(x+j+1);
                *(x+j+1) = t; /*完成交换*/
                k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
            }
        }
    }
}


/*
================================================
功能:希尔排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。

下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。

希尔排序是不稳定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
    int h, j, k, t;

    for (h=n/2; h>0; h=h/2) /*控制增量*/
    {
        for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/
        {
            t = *(x+j);
            for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
            {
                *(x+k+h) = *(x+k);
            }
            *(x+k+h) = t;
        }
    }
}


/*
================================================
功能:快速排序
输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述:

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。

显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
函数是用递归实现的,有兴趣的朋友可以改成非递归的。

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
初始关键字 [49 38 65 97 76 13 27 49]
第一次交换后 [27 38 65 97 76 13 49 49]
第二次交换后 [27 38 49 97 76 13 65 49]
J向左扫描,位置不变,第三次交换后 [27 38 13 97 76 49 65 49]
I向右扫描,位置不变,第四次交换后 [27 38 13 49 76 97 65 49]
J向左扫描 [27 38 13 49 76 97 65 49]
(一次划分过程)

初始关键字 [49 38 65 97 76 13 27 49]
一趟排序之后 [27 38 13] 49 [76 97 65 49]
二趟排序之后 [13] 27 [38] 49 [49 65]76 [97]
三趟排序之后 13 27 38 49 49 [65]76 97
最后的排序结果 13 27 38 49 49 65 76 97
各趟排序之后的状态
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
    int i, j, t;

    if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
    {
        i = low;
        j = high;
        t = *(x+low); /*暂存基准点的数*/

        while (i<j) /*循环扫描*/
        {
            while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/
            {
                j--; /*前移一个位置*/
            }

            if (i<j)
            {
                *(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
                i++; /*后移一个位置,并以此为基准点*/
            }

            while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/
            {
                i++; /*后移一个位置*/
            }

            if (i<j)
            {
                *(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
                j--; /*前移一个位置*/
            }
        }

        *(x+i) = t; /*一遍扫描完后,放到适当位置*/
        quick_sort(x,low,i-1);   /*对基准点左边的数再执行快速排序*/
        quick_sort(x,i+1,high);   /*对基准点右边的数再执行快速排序*/
    }
}


/*
================================================
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。

由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
的堆,并对它们作交换,最后得到有n个节点的有序序列。

从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。

堆排序是不稳定的。算法时间复杂度O(nlog2n)。

*/
/*
功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
    int t, k, j;

    t = *(x+s); /*暂存开始元素*/
    k = s;   /*开始元素下标*/
    j = 2*k + 1; /*右子树元素下标*/

    while (j<n)
    {
        if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/
        {
            j++;
        }

        if (t<*(x+j)) /*调整*/
        {
            *(x+k) = *(x+j);
            k = j; /*调整后,开始元素也随之调整*/
            j = 2*k + 1;
        }
        else /*没有需要调整了,已经是个堆了,退出循环。*/
        {
            break;
        }
    }

    *(x+k) = t; /*开始元素放到它正确位置*/
}


/*
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
    int i, k, t;
    int *p;

    for (i=n/2-1; i>=0; i--)
    {
        sift(x,n,i); /*初始建堆*/
    }

    for (k=n-1; k>=1; k--)
    {
        t = *(x+0); /*堆顶放到最后*/
        *(x+0) = *(x+k);
        *(x+k) = t;
        sift(x,k,0); /*剩下的数再建堆*/
    }
}


int main(void)
{
#define MAX 4
    int *p, i, a[MAX];

    /*录入测试数据*/
    p = a;
    printf("Input %d number for sorting :\n",MAX);
    for (i=0; i<MAX; i++)
    {
        scanf("%d",p++);
    }
    printf("\n");

    /*测试选择排序*/


    p = a;
    select_sort(p,MAX);
    /**/


    /*测试直接插入排序*/

    /*
       p = a;
       insert_sort(p,MAX);
     */


    /*测试冒泡排序*/

    /*
       p = a;
       insert_sort(p,MAX);
     */

    /*测试快速排序*/

    /*
       p = a;
       quick_sort(p,0,MAX-1);
     */

    /*测试堆排序*/

    /*
       p = a;
       heap_sort(p,MAX);
     */

    for (p=a, i=0; i<MAX; i++)
    {
        printf("%d ",*p++);
    }

    printf("\n");
    system("pause");
}