Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.1

来源:互联网 发布:深圳网络安防培训学校 编辑:程序博客网 时间:2024/04/24 14:05

Spark MLlib Deep Learning Neural Net(深度学习-神经网络)1.1

http://blog.csdn.net/sunbow0

Spark MLlib Deep Learning工具箱,是根据现有深度学习教程《UFLDL教程》中的算法,在SparkMLlib中的实现。具体Spark MLlib Deep Learning(深度学习)目录结构:

第一章Neural Net(NN)

1、源码

2、源码解析

3、实例

第二章Deep Belief Nets(DBNs)

第三章Convolution Neural Network(CNN)

第四章 Stacked Auto-Encoders(SAE)

第五章CAE 


第一章Neural Net(神经网络)

1源码

目前Spark MLlib Deep Learning工具箱源码的github地址为:

https://github.com/sunbow1/SparkMLlibDeepLearn

1.1 NeuralNet代码 

package NNimport org.apache.spark._import org.apache.spark.SparkContext._import org.apache.spark.rdd.RDDimport org.apache.spark.Loggingimport org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.mllib.linalg._import org.apache.spark.mllib.linalg.distributed.RowMatriximport breeze.linalg.{  Matrix => BM,  CSCMatrix => BSM,  DenseMatrix => BDM,  Vector => BV,  DenseVector => BDV,  SparseVector => BSV,  axpy => brzAxpy,  svd => brzSvd}import breeze.numerics.{  exp => Bexp,  tanh => Btanh}import scala.collection.mutable.ArrayBufferimport java.util.Randomimport scala.math._/** * label:目标矩阵 * nna:神经网络每层节点的输出值,a(0),a(1),a(2) * error:输出层与目标值的误差矩阵 */case class NNLabel(label: BDM[Double], nna: ArrayBuffer[BDM[Double]], error: BDM[Double]) extends Serializable/** * 配置参数 */case class NNConfig(  size: Array[Int],  layer: Int,  activation_function: String,  learningRate: Double,  momentum: Double,  scaling_learningRate: Double,  weightPenaltyL2: Double,  nonSparsityPenalty: Double,  sparsityTarget: Double,  inputZeroMaskedFraction: Double,  dropoutFraction: Double,  testing: Double,  output_function: String) extends Serializable/** * NN(neural network) */class NeuralNet(  private var size: Array[Int],  private var layer: Int,  private var activation_function: String,  private var learningRate: Double,  private var momentum: Double,  private var scaling_learningRate: Double,  private var weightPenaltyL2: Double,  private var nonSparsityPenalty: Double,  private var sparsityTarget: Double,  private var inputZeroMaskedFraction: Double,  private var dropoutFraction: Double,  private var testing: Double,  private var output_function: String) extends Serializable with Logging {  //          var size=Array(5, 7, 1)  //          var layer=3  //          var activation_function="tanh_opt"  //          var learningRate=2.0  //          var momentum=0.5  //          var scaling_learningRate=1.0  //          var weightPenaltyL2=0.0  //          var nonSparsityPenalty=0.0  //          var sparsityTarget=0.05  //          var inputZeroMaskedFraction=0.0  //          var dropoutFraction=0.0  //          var testing=0.0  //          var output_function="sigm"  /**   * size = architecture;   * n = numel(nn.size);   * activation_function = sigm   隐含层函数Activation functions of hidden layers: 'sigm' (sigmoid) or 'tanh_opt' (optimal tanh).   * learningRate = 2;            学习率learning rate Note: typically needs to be lower when using 'sigm' activation function and non-normalized inputs.   * momentum = 0.5;              Momentum   * scaling_learningRate = 1;    Scaling factor for the learning rate (each epoch)   * weightPenaltyL2  = 0;        正则化L2 regularization   * nonSparsityPenalty = 0;      权重稀疏度惩罚值on sparsity penalty   * sparsityTarget = 0.05;       Sparsity target   * inputZeroMaskedFraction = 0; 加入noise,Used for Denoising AutoEncoders   * dropoutFraction = 0;         每一次mini-batch样本输入训练时,随机扔掉x%的隐含层节点Dropout level (http://www.cs.toronto.edu/~hinton/absps/dropout.pdf)   * testing = 0;                 Internal variable. nntest sets this to one.   * output = 'sigm';             输出函数output unit 'sigm' (=logistic), 'softmax' and 'linear'   *   */  def this() = this(NeuralNet.Architecture, 3, NeuralNet.Activation_Function, 2.0, 0.5, 1.0, 0.0, 0.0, 0.05, 0.0, 0.0, 0.0, NeuralNet.Output)  /** 设置神经网络结构. Default: [10, 5, 1]. */  def setSize(size: Array[Int]): this.type = {    this.size = size    this  }  /** 设置神经网络层数据. Default: 3. */  def setLayer(layer: Int): this.type = {    this.layer = layer    this  }  /** 设置隐含层函数. Default: sigm. */  def setActivation_function(activation_function: String): this.type = {    this.activation_function = activation_function    this  }  /** 设置学习率因子. Default: 2. */  def setLearningRate(learningRate: Double): this.type = {    this.learningRate = learningRate    this  }  /** 设置Momentum. Default: 0.5. */  def setMomentum(momentum: Double): this.type = {    this.momentum = momentum    this  }  /** 设置scaling_learningRate. Default: 1. */  def setScaling_learningRate(scaling_learningRate: Double): this.type = {    this.scaling_learningRate = scaling_learningRate    this  }  /** 设置正则化L2因子. Default: 0. */  def setWeightPenaltyL2(weightPenaltyL2: Double): this.type = {    this.weightPenaltyL2 = weightPenaltyL2    this  }  /** 设置权重稀疏度惩罚因子. Default: 0. */  def setNonSparsityPenalty(nonSparsityPenalty: Double): this.type = {    this.nonSparsityPenalty = nonSparsityPenalty    this  }  /** 设置权重稀疏度目标值. Default: 0.05. */  def setSparsityTarget(sparsityTarget: Double): this.type = {    this.sparsityTarget = sparsityTarget    this  }  /** 设置权重加入噪声因子. Default: 0. */  def setInputZeroMaskedFraction(inputZeroMaskedFraction: Double): this.type = {    this.inputZeroMaskedFraction = inputZeroMaskedFraction    this  }  /** 设置权重Dropout因子. Default: 0. */  def setDropoutFraction(dropoutFraction: Double): this.type = {    this.dropoutFraction = dropoutFraction    this  }  /** 设置testing. Default: 0. */  def setTesting(testing: Double): this.type = {    this.testing = testing    this  }  /** 设置输出函数. Default: linear. */  def setOutput_function(output_function: String): this.type = {    this.output_function = output_function    this  }  /**   * 运行神经网络算法.   */  def NNtrain(train_d: RDD[(BDM[Double], BDM[Double])], opts: Array[Double]): NeuralNetModel = {    val sc = train_d.sparkContext    var initStartTime = System.currentTimeMillis()    var initEndTime = System.currentTimeMillis()    // 参数配置 广播配置    var nnconfig = NNConfig(size, layer, activation_function, learningRate, momentum, scaling_learningRate,      weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, testing,      output_function)    // 初始化权重    var nn_W = NeuralNet.InitialWeight(size)    var nn_vW = NeuralNet.InitialWeightV(size)    //        val tmpw = nn_W(1)    //        for (i <- 0 to tmpw.rows -1) {    //          for (j <- 0 to tmpw.cols - 1) {    //            print(tmpw(i, j) + "\t")    //          }    //          println()    //        }    // 初始化每层的平均激活度nn.p    // average activations (for use with sparsity)    var nn_p = NeuralNet.InitialActiveP(size)    // 样本数据划分:训练数据、交叉检验数据    val validation = opts(2)    val splitW1 = Array(1.0 - validation, validation)    val train_split1 = train_d.randomSplit(splitW1, System.nanoTime())    val train_t = train_split1(0)    val train_v = train_split1(1)    // m:训练样本的数量    val m = train_t.count    // batchsize是做batch gradient时候的大小     // 计算batch的数量    val batchsize = opts(0).toInt    val numepochs = opts(1).toInt    val numbatches = (m / batchsize).toInt    var L = Array.fill(numepochs * numbatches.toInt)(0.0)    var n = 0    var loss_train_e = Array.fill(numepochs)(0.0)    var loss_val_e = Array.fill(numepochs)(0.0)    // numepochs是循环的次数     for (i <- 1 to numepochs) {      initStartTime = System.currentTimeMillis()      val splitW2 = Array.fill(numbatches)(1.0 / numbatches)      // 根据分组权重,随机划分每组样本数据        val bc_config = sc.broadcast(nnconfig)      for (l <- 1 to numbatches) {        // 权重         val bc_nn_W = sc.broadcast(nn_W)        val bc_nn_vW = sc.broadcast(nn_vW)        //        println(i + "\t" + l)        //        val tmpw0 = bc_nn_W.value(0)        //        for (i <- 0 to tmpw0.rows - 1) {        //          for (j <- 0 to tmpw0.cols - 1) {        //            print(tmpw0(i, j) + "\t")        //          }        //          println()        //        }        //        val tmpw1 = bc_nn_W.value(1)        //        for (i <- 0 to tmpw1.rows - 1) {        //          for (j <- 0 to tmpw1.cols - 1) {        //            print(tmpw1(i, j) + "\t")        //          }        //          println()        //        }        // 样本划分        val train_split2 = train_t.randomSplit(splitW2, System.nanoTime())        val batch_xy1 = train_split2(l - 1)        //        val train_split3 = train_t.filter { f => (f._1 >= batchsize * (l - 1) + 1) && (f._1 <= batchsize * (l)) }        //        val batch_xy1 = train_split3.map(f => (f._2, f._3))        // Add noise to input (for use in denoising autoencoder)        // 加入noise,这是denoising autoencoder需要使用到的部分          // 这部分请参见《Extracting and Composing Robust Features with Denoising Autoencoders》这篇论文          // 具体加入的方法就是把训练样例中的一些数据调整变为0,inputZeroMaskedFraction表示了调整的比例          //val randNoise = NeuralNet.RandMatrix(batch_x.numRows.toInt, batch_x.numCols.toInt, inputZeroMaskedFraction)        val batch_xy2 = if (bc_config.value.inputZeroMaskedFraction != 0) {          NeuralNet.AddNoise(batch_xy1, bc_config.value.inputZeroMaskedFraction)        } else batch_xy1        //        val tmpxy = batch_xy2.map(f => (f._1.toArray,f._2.toArray)).toArray.map {f => ((new ArrayBuffer() ++ f._1) ++ f._2).toArray}        //        for (i <- 0 to tmpxy.length - 1) {        //          for (j <- 0 to tmpxy(i).length - 1) {        //            print(tmpxy(i)(j) + "\t")        //          }        //          println()        //        }        // NNff是进行前向传播        // nn = nnff(nn, batch_x, batch_y);        val train_nnff = NeuralNet.NNff(batch_xy2, bc_config, bc_nn_W)        //        val tmpa0 = train_nnff.map(f => f._1.nna(0)).take(20)        //        println("tmpa0")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpa0(i).cols - 1) {        //            print(tmpa0(i)(0, j) + "\t")        //          }        //          println()        //        }        //        val tmpa1 = train_nnff.map(f => f._1.nna(1)).take(20)        //        println("tmpa1")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpa1(i).cols - 1) {        //            print(tmpa1(i)(0, j) + "\t")        //          }        //          println()        //        }        //        val tmpa2 = train_nnff.map(f => f._1.nna(2)).take(20)        //        println("tmpa2")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpa2(i).cols - 1) {        //            print(tmpa2(i)(0, j) + "\t")        //          }        //          println()        //        }        // sparsity计算,计算每层节点的平均稀疏度        nn_p = NeuralNet.ActiveP(train_nnff, bc_config, nn_p)        val bc_nn_p = sc.broadcast(nn_p)        // NNbp是后向传播        // nn = nnbp(nn);        val train_nnbp = NeuralNet.NNbp(train_nnff, bc_config, bc_nn_W, bc_nn_p)        //        val tmpd0 = rdd5.map(f => f._2(2)).take(20)        //        println("tmpd0")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpd0(i).cols - 1) {        //            print(tmpd0(i)(0, j) + "\t")        //          }        //          println()        //        }        //        val tmpd1 = rdd5.map(f => f._2(1)).take(20)        //        println("tmpd1")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpd1(i).cols - 1) {        //            print(tmpd1(i)(0, j) + "\t")        //          }        //          println()        //        }        //        val tmpdw0 = rdd5.map(f => f._3(0)).take(20)        //        println("tmpdw0")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpdw0(i).cols - 1) {        //            print(tmpdw0(i)(0, j) + "\t")        //          }        //          println()        //        }        //        val tmpdw1 = rdd5.map(f => f._3(1)).take(20)        //        println("tmpdw1")        //        for (i <- 0 to 10) {        //          for (j <- 0 to tmpdw1(i).cols - 1) {        //            print(tmpdw1(i)(0, j) + "\t")        //          }        //          println()        //        }        // nn = NNapplygrads(nn) returns an neural network structure with updated        // weights and biases        // 更新权重参数:w=w-α*[dw + λw]            val train_nnapplygrads = NeuralNet.NNapplygrads(train_nnbp, bc_config, bc_nn_W, bc_nn_vW)        nn_W = train_nnapplygrads(0)        nn_vW = train_nnapplygrads(1)        //        val tmpw2 = train_nnapplygrads(0)(0)        //        for (i <- 0 to tmpw2.rows - 1) {        //          for (j <- 0 to tmpw2.cols - 1) {        //            print(tmpw2(i, j) + "\t")        //          }        //          println()        //        }        //        val tmpw3 = train_nnapplygrads(0)(1)        //        for (i <- 0 to tmpw3.rows - 1) {        //          for (j <- 0 to tmpw3.cols - 1) {        //            print(tmpw3(i, j) + "\t")        //          }        //          println()        //        }        // error and loss        // 输出误差计算        val loss1 = train_nnff.map(f => f._1.error)        val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(          seqOp = (c, v) => {            // c: (e, count), v: (m)            val e1 = c._1            val e2 = (v :* v).sum            val esum = e1 + e2            (esum, c._2 + 1)          },          combOp = (c1, c2) => {            // c: (e, count)            val e1 = c1._1            val e2 = c2._1            val esum = e1 + e2            (esum, c1._2 + c2._2)          })        val Loss = loss2 / counte.toDouble        L(n) = Loss * 0.5        n = n + 1      }      // 计算本次迭代的训练误差及交叉检验误差      // Full-batch train mse      val evalconfig = NNConfig(size, layer, activation_function, learningRate, momentum, scaling_learningRate,        weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, 1.0,        output_function)      loss_train_e(i - 1) = NeuralNet.NNeval(train_t, sc.broadcast(evalconfig), sc.broadcast(nn_W))      if (validation > 0) loss_val_e(i - 1) = NeuralNet.NNeval(train_v, sc.broadcast(evalconfig), sc.broadcast(nn_W))      // 更新学习因子      // nn.learningRate = nn.learningRate * nn.scaling_learningRate;      nnconfig = NNConfig(size, layer, activation_function, nnconfig.learningRate * nnconfig.scaling_learningRate, momentum, scaling_learningRate,        weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, testing,        output_function)      initEndTime = System.currentTimeMillis()      // 打印输出结果      printf("epoch: numepochs = %d , Took = %d seconds; Full-batch train mse = %f, val mse = %f.\n", i, scala.math.ceil((initEndTime - initStartTime).toDouble / 1000).toLong, loss_train_e(i - 1), loss_val_e(i - 1))    }    val configok = NNConfig(size, layer, activation_function, learningRate, momentum, scaling_learningRate,      weightPenaltyL2, nonSparsityPenalty, sparsityTarget, inputZeroMaskedFraction, dropoutFraction, 1.0,      output_function)    new NeuralNetModel(configok, nn_W)  }}/** * NN(neural network) */object NeuralNet extends Serializable {  // Initialization mode names  val Activation_Function = "sigm"  val Output = "linear"  val Architecture = Array(10, 5, 1)  /**   * 增加随机噪声   * 若随机值>=Fraction,值不变,否则改为0   */  def AddNoise(rdd: RDD[(BDM[Double], BDM[Double])], Fraction: Double): RDD[(BDM[Double], BDM[Double])] = {    val addNoise = rdd.map { f =>      val features = f._2      val a = BDM.rand[Double](features.rows, features.cols)      val a1 = a :>= Fraction      val d1 = a1.data.map { f => if (f == true) 1.0 else 0.0 }      val a2 = new BDM(features.rows, features.cols, d1)      val features2 = features :* a2      (f._1, features2)    }    addNoise  }  /**   * 初始化权重   * 初始化为一个很小的、接近零的随机值   */  def InitialWeight2(size: Array[Int]): Array[BDM[Double]] = {    // 初始化权重参数    // weights and weight momentum    // nn.W{i - 1} = (rand(nn.size(i), nn.size(i - 1)+1) - 0.5) * 2 * 4 * sqrt(6 / (nn.size(i) + nn.size(i - 1)));    // nn.vW{i - 1} = zeros(size(nn.W{i - 1}));    val n = size.length    val nn_W = ArrayBuffer[BDM[Double]]()    val d1 = BDM((2.54631575950577, -2.72375471180638, -1.83131523622017, -0.832303531504013, -1.28869970471936, -0.460188104184124), (-1.52091024201213, 1.81815348316090, -0.533406209340414, 1.77153723107141, -1.70376378930231, 1.95852409868481), (0.604392922735100, -0.312805008341265, 2.46338861792203, -2.77264318419692, -2.74202474572555, 0.142284005609256), (-0.0792951314491902, 0.652983968878905, 2.35836765255640, -2.04274164893227, 1.39603060318734, -1.68208055847319), (2.21352121948139, 1.65144527075334, -0.507588360889342, -1.68141383648426, -0.310581480324221, 0.973756570035639), (1.48264358368951, 2.38613449604874, 2.22681802175890, -1.70428719030501, 2.44271213316363, 1.91268676272635), (-0.246256073282793, 1.34750367072394, -2.50094445126864, 0.587138926992906, -0.192365052800164, -2.71732925728203))    nn_W += d1    val d2 = BDM((1.25592501437006, -0.834980000207940, 2.29875024099543, 0.0194882319892158, 1.45126037957791, -0.492648144141757, -1.35365058999520, -2.15014190874756))    nn_W += d2    nn_W.toArray  }  def InitialWeight(size: Array[Int]): Array[BDM[Double]] = {    // 初始化权重参数    // weights and weight momentum    // nn.W{i - 1} = (rand(nn.size(i), nn.size(i - 1)+1) - 0.5) * 2 * 4 * sqrt(6 / (nn.size(i) + nn.size(i - 1)));    // nn.vW{i - 1} = zeros(size(nn.W{i - 1}));    val n = size.length    val nn_W = ArrayBuffer[BDM[Double]]()    for (i <- 1 to n - 1) {      val d1 = BDM.rand(size(i), size(i - 1) + 1)      d1 :-= 0.5      val f1 = 2 * 4 * sqrt(6.0 / (size(i) + size(i - 1)))      val d2 = d1 :* f1      //val d3 = new DenseMatrix(d2.rows, d2.cols, d2.data, d2.isTranspose)      //val d4 = Matrices.dense(d2.rows, d2.cols, d2.data)      nn_W += d2    }    nn_W.toArray  }  /**   * 初始化权重vW   * 初始化为0   */  def InitialWeightV(size: Array[Int]): Array[BDM[Double]] = {    // 初始化权重参数    // weights and weight momentum    // nn.vW{i - 1} = zeros(size(nn.W{i - 1}));    val n = size.length    val nn_vW = ArrayBuffer[BDM[Double]]()    for (i <- 1 to n - 1) {      val d1 = BDM.zeros[Double](size(i), size(i - 1) + 1)      nn_vW += d1    }    nn_vW.toArray  }  /**   * 初始每一层的平均激活度   * 初始化为0   */  def InitialActiveP(size: Array[Int]): Array[BDM[Double]] = {    // 初始每一层的平均激活度    // average activations (for use with sparsity)    // nn.p{i}     = zeros(1, nn.size(i));      val n = size.length    val nn_p = ArrayBuffer[BDM[Double]]()    nn_p += BDM.zeros[Double](1, 1)    for (i <- 1 to n - 1) {      val d1 = BDM.zeros[Double](1, size(i))      nn_p += d1    }    nn_p.toArray  }  /**   * 随机让网络某些隐含层节点的权重不工作   * 若随机值>=Fraction,矩阵值不变,否则改为0   */  def DropoutWeight(matrix: BDM[Double], Fraction: Double): Array[BDM[Double]] = {    val aa = BDM.rand[Double](matrix.rows, matrix.cols)    val aa1 = aa :> Fraction    val d1 = aa1.data.map { f => if (f == true) 1.0 else 0.0 }    val aa2 = new BDM(matrix.rows: Int, matrix.cols: Int, d1: Array[Double])    val matrix2 = matrix :* aa2    Array(aa2, matrix2)  }  /**   * sigm激活函数   * X = 1./(1+exp(-P));   */  def sigm(matrix: BDM[Double]): BDM[Double] = {    val s1 = 1.0 / (Bexp(matrix * (-1.0)) + 1.0)    s1  }  /**   * tanh激活函数   * f=1.7159*tanh(2/3.*A);   */  def tanh_opt(matrix: BDM[Double]): BDM[Double] = {    val s1 = Btanh(matrix * (2.0 / 3.0)) * 1.7159    s1  }  /**   * nnff是进行前向传播   * 计算神经网络中的每个节点的输出值;   */  def NNff(    batch_xy2: RDD[(BDM[Double], BDM[Double])],    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): RDD[(NNLabel, Array[BDM[Double]])] = {    // 第1层:a(1)=[1 x]    // 增加偏置项b    val train_data1 = batch_xy2.map { f =>      val lable = f._1      val features = f._2      val nna = ArrayBuffer[BDM[Double]]()      val Bm1 = new BDM(features.rows, 1, Array.fill(features.rows * 1)(1.0))      val features2 = BDM.horzcat(Bm1, features)      val error = BDM.zeros[Double](lable.rows, lable.cols)      nna += features2      NNLabel(lable, nna, error)    }    //    println("bc_size " + bc_config.value.size(0) + bc_config.value.size(1) + bc_config.value.size(2))    //    println("bc_layer " + bc_config.value.layer)    //    println("bc_activation_function " + bc_config.value.activation_function)    //    println("bc_output_function " + bc_config.value.output_function)    //    //    println("tmpw0 ")    //    val tmpw0 = bc_nn_W.value(0)    //    for (i <- 0 to tmpw0.rows - 1) {    //      for (j <- 0 to tmpw0.cols - 1) {    //        print(tmpw0(i, j) + "\t")    //      }    //      println()    //    }    // feedforward pass    // 第2至n-1层计算,a(i)=f(a(i-1)*w(i-1)')    //val tmp1 = train_data1.map(f => f.nna(0).data).take(1)(0)    //val tmp2 = new BDM(1, tmp1.length, tmp1)    //val nn_a = ArrayBuffer[BDM[Double]]()    //nn_a += tmp2    val train_data2 = train_data1.map { f =>      val nn_a = f.nna      val dropOutMask = ArrayBuffer[BDM[Double]]()      dropOutMask += new BDM[Double](1, 1, Array(0.0))      for (j <- 1 to bc_config.value.layer - 2) {        // 计算每层输出        // Calculate the unit's outputs (including the bias term)        // nn.a{i} = sigm(nn.a{i - 1} * nn.W{i - 1}')        // nn.a{i} = tanh_opt(nn.a{i - 1} * nn.W{i - 1}');                    val A1 = nn_a(j - 1)        val W1 = bc_nn_W.value(j - 1)        val aw1 = A1 * W1.t        val nnai1 = bc_config.value.activation_function match {          case "sigm" =>            val aw2 = NeuralNet.sigm(aw1)            aw2          case "tanh_opt" =>            val aw2 = NeuralNet.tanh_opt(aw1)            //val aw2 = Btanh(aw1 * (2.0 / 3.0)) * 1.7159            aw2        }        // dropout计算        // Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分        // 但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了        // 参照 http://www.cnblogs.com/tornadomeet/p/3258122.html           val dropoutai = if (bc_config.value.dropoutFraction > 0) {          if (bc_config.value.testing == 1) {            val nnai2 = nnai1 * (1.0 - bc_config.value.dropoutFraction)            Array(new BDM[Double](1, 1, Array(0.0)), nnai2)          } else {            NeuralNet.DropoutWeight(nnai1, bc_config.value.dropoutFraction)          }        } else {          val nnai2 = nnai1          Array(new BDM[Double](1, 1, Array(0.0)), nnai2)        }        val nnai2 = dropoutai(1)        dropOutMask += dropoutai(0)        // Add the bias term        // 增加偏置项b        // nn.a{i} = [ones(m,1) nn.a{i}];        val Bm1 = BDM.ones[Double](nnai2.rows, 1)        val nnai3 = BDM.horzcat(Bm1, nnai2)        nn_a += nnai3      }      (NNLabel(f.label, nn_a, f.error), dropOutMask.toArray)    }    // 输出层计算    val train_data3 = train_data2.map { f =>      val nn_a = f._1.nna      // nn.a{n} = sigm(nn.a{n - 1} * nn.W{n - 1}');      // nn.a{n} = nn.a{n - 1} * nn.W{n - 1}';                val An1 = nn_a(bc_config.value.layer - 2)      val Wn1 = bc_nn_W.value(bc_config.value.layer - 2)      val awn1 = An1 * Wn1.t      val nnan1 = bc_config.value.output_function match {        case "sigm" =>          val awn2 = NeuralNet.sigm(awn1)          //val awn2 = 1.0 / (Bexp(awn1 * (-1.0)) + 1.0)          awn2        case "linear" =>          val awn2 = awn1          awn2      }      nn_a += nnan1      (NNLabel(f._1.label, nn_a, f._1.error), f._2)    }    // error and loss    // 输出误差计算    // nn.e = y - nn.a{n};    // val nn_e = batch_y - nnan    val train_data4 = train_data3.map { f =>      val batch_y = f._1.label      val nnan = f._1.nna(bc_config.value.layer - 1)      val error = (batch_y - nnan)      (NNLabel(f._1.label, f._1.nna, error), f._2)    }    train_data4  }  /**   * sparsity计算,网络稀疏度   * 计算每个节点的平均值   */  def ActiveP(    train_nnff: RDD[(NNLabel, Array[BDM[Double]])],    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],    nn_p_old: Array[BDM[Double]]): Array[BDM[Double]] = {    val nn_p = ArrayBuffer[BDM[Double]]()    nn_p += BDM.zeros[Double](1, 1)    // calculate running exponential activations for use with sparsity    // sparsity计算,计算sparsity,nonSparsityPenalty 是对没达到sparsitytarget的参数的惩罚系数     for (i <- 1 to bc_config.value.layer - 1) {      val pi1 = train_nnff.map(f => f._1.nna(i))      val initpi = BDM.zeros[Double](1, bc_config.value.size(i))      val (piSum, miniBatchSize) = pi1.treeAggregate((initpi, 0L))(        seqOp = (c, v) => {          // c: (nnasum, count), v: (nna)          val nna1 = c._1          val nna2 = v          val nnasum = nna1 + nna2          (nnasum, c._2 + 1)        },        combOp = (c1, c2) => {          // c: (nnasum, count)          val nna1 = c1._1          val nna2 = c2._1          val nnasum = nna1 + nna2          (nnasum, c1._2 + c2._2)        })      val piAvg = piSum / miniBatchSize.toDouble      val oldpi = nn_p_old(i)      val newpi = (piAvg * 0.01) + (oldpi * 0.09)      nn_p += newpi    }    nn_p.toArray  }  /**   * NNbp是后向传播   * 计算权重的平均偏导数   */  def NNbp(    train_nnff: RDD[(NNLabel, Array[BDM[Double]])],    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]],    bc_nn_p: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): Array[BDM[Double]] = {    // 第n层偏导数:d(n)=-(y-a(n))*f'(z),sigmoid函数f'(z)表达式:f'(z)=f(z)*[1-f(z)]    // sigm: d{n} = - nn.e .* (nn.a{n} .* (1 - nn.a{n}));    // {'softmax','linear'}: d{n} = - nn.e;    val train_data5 = train_nnff.map { f =>      val nn_a = f._1.nna      val error = f._1.error      val dn = ArrayBuffer[BDM[Double]]()      val nndn = bc_config.value.output_function match {        case "sigm" =>          val fz = nn_a(bc_config.value.layer - 1)          (error * (-1.0)) :* (fz :* (1.0 - fz))        case "linear" =>          error * (-1.0)      }      dn += nndn      (f._1, f._2, dn)    }    // 第n-1至第2层导数:d(n)=-(w(n)*d(n+1))*f'(z)     val train_data6 = train_data5.map { f =>      // 假设 f(z) 是sigmoid函数 f(z)=1/[1+e^(-z)],f'(z)表达式,f'(z)=f(z)*[1-f(z)]          // 假设 f(z) tanh f(z)=1.7159*tanh(2/3.*A) ,f'(z)表达式,f'(z)=1.7159 * 2/3 * (1 - 1/(1.7159)^2 * f(z).^2)         //val di = ArrayBuffer( BDM((1.765226346140333)))      //      val nn_a = ArrayBuffer[BDM[Double]]()      //      val a1=BDM((1.0,0.312605257000000,0.848582961000000,0.999014768000000,0.278330771000000,0.462701179000000))      //      val a2= BDM((1.0,0.838091550300577,0.996782915917104,0.118033012437165))      //      val a3= BDM((2.18788852054974))      //      nn_a += a1      //      nn_a += a2      //      nn_a += a3      val nn_a = f._1.nna      val di = f._3      val dropout = f._2      for (i <- bc_config.value.layer - 2 to 1) {        // f'(z)表达式        val nnd_act = bc_config.value.activation_function match {          case "sigm" =>            val d_act = nn_a(i) :* (1.0 - nn_a(i))            d_act          case "tanh_opt" =>            val fz2 = (1.0 - ((nn_a(i) :* nn_a(i)) * (1.0 / (1.7159 * 1.7159))))            val d_act = fz2 * (1.7159 * (2.0 / 3.0))            d_act        }        // 稀疏度惩罚误差计算:-(t/p)+(1-t)/(1-p)        // sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))];        val sparsityError = if (bc_config.value.nonSparsityPenalty > 0) {          val nn_pi1 = bc_nn_p.value(i)          val nn_pi2 = (bc_config.value.sparsityTarget / nn_pi1) * (-1.0) + (1.0 - bc_config.value.sparsityTarget) / (1.0 - nn_pi1)          val Bm1 = new BDM(nn_pi2.rows, 1, Array.fill(nn_pi2.rows * 1)(1.0))          val sparsity = BDM.horzcat(Bm1, nn_pi2 * bc_config.value.nonSparsityPenalty)          sparsity        } else {          val nn_pi1 = bc_nn_p.value(i)          val sparsity = BDM.zeros[Double](nn_pi1.rows, nn_pi1.cols + 1)          sparsity        }        // 导数:d(n)=-( w(n)*d(n+1)+ sparsityError )*f'(z)         // d{i} = (d{i + 1} * nn.W{i} + sparsityError) .* d_act;        val W1 = bc_nn_W.value(i)        val nndi1 = if (i + 1 == bc_config.value.layer - 1) {          //in this case in d{n} there is not the bias term to be removed            val di1 = di(i - 1)          val di2 = (di1 * W1 + sparsityError) :* nnd_act          di2        } else {          // in this case in d{i} the bias term has to be removed          val di1 = di(i - 1)(::, 1 to -1)          val di2 = (di1 * W1 + sparsityError) :* nnd_act          di2        }        // dropoutFraction        val nndi2 = if (bc_config.value.dropoutFraction > 0) {          val dropouti1 = dropout(i)          val Bm1 = new BDM(nndi1.rows: Int, 1: Int, Array.fill(nndi1.rows * 1)(1.0))          val dropouti2 = BDM.horzcat(Bm1, dropouti1)          nndi1 :* dropouti2        } else nndi1        di += nndi2      }      di += BDM.zeros(1, 1)      // 计算最终需要的偏导数值:dw(n)=(1/m)∑d(n+1)*a(n)      //  nn.dW{i} = (d{i + 1}' * nn.a{i}) / size(d{i + 1}, 1);      val dw = ArrayBuffer[BDM[Double]]()      for (i <- 0 to bc_config.value.layer - 2) {        val nndW = if (i + 1 == bc_config.value.layer - 1) {          (di(bc_config.value.layer - 2 - i).t) * nn_a(i)        } else {          (di(bc_config.value.layer - 2 - i)(::, 1 to -1)).t * nn_a(i)        }        dw += nndW      }      (f._1, di, dw)    }    val train_data7 = train_data6.map(f => f._3)    // Sample a subset (fraction miniBatchFraction) of the total data    // compute and sum up the subgradients on this subset (this is one map-reduce)    val initgrad = ArrayBuffer[BDM[Double]]()    for (i <- 0 to bc_config.value.layer - 2) {      val init1 = if (i + 1 == bc_config.value.layer - 1) {        BDM.zeros[Double](bc_config.value.size(i + 1), bc_config.value.size(i) + 1)      } else {        BDM.zeros[Double](bc_config.value.size(i + 1), bc_config.value.size(i) + 1)      }      initgrad += init1    }    val (gradientSum, miniBatchSize) = train_data7.treeAggregate((initgrad, 0L))(      seqOp = (c, v) => {        // c: (grad, count), v: (grad)        val grad1 = c._1        val grad2 = v        val sumgrad = ArrayBuffer[BDM[Double]]()        for (i <- 0 to bc_config.value.layer - 2) {          val Bm1 = grad1(i)          val Bm2 = grad2(i)          val Bmsum = Bm1 + Bm2          sumgrad += Bmsum        }        (sumgrad, c._2 + 1)      },      combOp = (c1, c2) => {        // c: (grad, count)        val grad1 = c1._1        val grad2 = c2._1        val sumgrad = ArrayBuffer[BDM[Double]]()        for (i <- 0 to bc_config.value.layer - 2) {          val Bm1 = grad1(i)          val Bm2 = grad2(i)          val Bmsum = Bm1 + Bm2          sumgrad += Bmsum        }        (sumgrad, c1._2 + c2._2)      })    // 求平均值    val gradientAvg = ArrayBuffer[BDM[Double]]()    for (i <- 0 to bc_config.value.layer - 2) {      val Bm1 = gradientSum(i)      val Bmavg = Bm1 :/ miniBatchSize.toDouble      gradientAvg += Bmavg    }    gradientAvg.toArray  }  /**   * NNapplygrads是权重更新   * 权重更新   */  def NNapplygrads(    train_nnbp: Array[BDM[Double]],    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]],    bc_nn_vW: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): Array[Array[BDM[Double]]] = {    // nn = nnapplygrads(nn) returns an neural network structure with updated    // weights and biases    // 更新权重参数:w=w-α*[dw + λw]        val W_a = ArrayBuffer[BDM[Double]]()    val vW_a = ArrayBuffer[BDM[Double]]()    for (i <- 0 to bc_config.value.layer - 2) {      val nndwi = if (bc_config.value.weightPenaltyL2 > 0) {        val dwi = train_nnbp(i)        val zeros = BDM.zeros[Double](dwi.rows, 1)        val l2 = BDM.horzcat(zeros, dwi(::, 1 to -1))        val dwi2 = dwi + (l2 * bc_config.value.weightPenaltyL2)        dwi2      } else {        val dwi = train_nnbp(i)        dwi      }      val nndwi2 = nndwi :* bc_config.value.learningRate      val nndwi3 = if (bc_config.value.momentum > 0) {        val vwi = bc_nn_vW.value(i)        val dw3 = nndwi2 + (vwi * bc_config.value.momentum)        dw3      } else {        nndwi2      }      // nn.W{i} = nn.W{i} - dW;      W_a += (bc_nn_W.value(i) - nndwi3)      // nn.vW{i} = nn.momentum*nn.vW{i} + dW;      val nnvwi1 = if (bc_config.value.momentum > 0) {        val vwi = bc_nn_vW.value(i)        val vw3 = nndwi2 + (vwi * bc_config.value.momentum)        vw3      } else {        bc_nn_vW.value(i)      }      vW_a += nnvwi1    }    Array(W_a.toArray, vW_a.toArray)  }  /**   * nneval是进行前向传播并计算输出误差   * 计算神经网络中的每个节点的输出值,并计算平均误差;   */  def NNeval(    batch_xy: RDD[(BDM[Double], BDM[Double])],    bc_config: org.apache.spark.broadcast.Broadcast[NNConfig],    bc_nn_W: org.apache.spark.broadcast.Broadcast[Array[BDM[Double]]]): Double = {    // NNff是进行前向传播    // nn = nnff(nn, batch_x, batch_y);    val train_nnff = NeuralNet.NNff(batch_xy, bc_config, bc_nn_W)    // error and loss    // 输出误差计算    val loss1 = train_nnff.map(f => f._1.error)    val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(      seqOp = (c, v) => {        // c: (e, count), v: (m)        val e1 = c._1        val e2 = (v :* v).sum        val esum = e1 + e2        (esum, c._2 + 1)      },      combOp = (c1, c2) => {        // c: (e, count)        val e1 = c1._1        val e2 = c2._1        val esum = e1 + e2        (esum, c1._2 + c2._2)      })    val Loss = loss2 / counte.toDouble    Loss * 0.5  }}

1.2 NeuralNetModel代码

package NNimport breeze.linalg.{  Matrix => BM,  CSCMatrix => BSM,  DenseMatrix => BDM,  Vector => BV,  DenseVector => BDV,  SparseVector => BSV}import org.apache.spark.rdd.RDD/** * label:目标矩阵 * features:特征矩阵 * predict_label:预测矩阵 * error:误差 */case class PredictNNLabel(label: BDM[Double], features: BDM[Double], predict_label: BDM[Double], error: BDM[Double]) extends Serializable/** * NN(neural network) */class NeuralNetModel(  val config: NNConfig,  val weights: Array[BDM[Double]]) extends Serializable {  /**   * 返回预测结果   *  返回格式:(label, feature,  predict_label, error)   */  def predict(dataMatrix: RDD[(BDM[Double], BDM[Double])]): RDD[PredictNNLabel] = {    val sc = dataMatrix.sparkContext    val bc_nn_W = sc.broadcast(weights)    val bc_config = sc.broadcast(config)    // NNff是进行前向传播    // nn = nnff(nn, batch_x, batch_y);    val train_nnff = NeuralNet.NNff(dataMatrix, bc_config, bc_nn_W)    val predict = train_nnff.map { f =>      val label = f._1.label      val error = f._1.error      val nnan = f._1.nna(bc_config.value.layer - 1)      val nna1 = f._1.nna(0)(::, 1 to -1)      PredictNNLabel(label, nna1, nnan, error)    }    predict  }  /**   * 计算输出误差   * 平均误差;   */  def Loss(predict: RDD[PredictNNLabel]): Double = {    val predict1 = predict.map(f => f.error)    // error and loss    // 输出误差计算    val loss1 = predict1    val (loss2, counte) = loss1.treeAggregate((0.0, 0L))(      seqOp = (c, v) => {        // c: (e, count), v: (m)        val e1 = c._1        val e2 = (v :* v).sum        val esum = e1 + e2        (esum, c._2 + 1)      },      combOp = (c1, c2) => {        // c: (e, count)        val e1 = c1._1        val e2 = c2._1        val esum = e1 + e2        (esum, c1._2 + c2._2)      })    val Loss = loss2 / counte.toDouble    Loss * 0.5  }}

转载请注明出处:

http://blog.csdn.net/sunbow0



 

1 0