PCI总线驱动

来源:互联网 发布:java web方面的书籍 编辑:程序博客网 时间:2024/04/25 05:23


一、PCI总线系统体系结构

PCI是外围设备互连(Peripheral Component Interconnect)的简称,作为一种通用的总线接口标准,它在目前的计算机系统中得到了非常广泛的应用。PCI提供了一组完整的总线接口规范,其目的是描述如何将计算机系统中的外围设备以一种结构化和可控化的方式连接在一起,同时它还刻画了外围设备在连接时的电气特性和行为规约,并且详细定义了计算机系统中的各个不同部件之间应该如何正确地进行交互。

无论是在基于Intel芯片的PC机中,或是在基于Alpha芯片的工作站上,PCI毫无疑问都是目前使用最广泛的一种总线接口标准。同旧式的ISA总线不同,PCI将计算机系统中的总线子系统与存储子系统完全地分开,CPU通过一块称为PCI桥(PCI-Bridge)的设备来完成同总线子系统的交互,如图1所示。

图1 PCI子系统的体系结构
图1 PCI子系统的体系结构

由于使用了更高的时钟频率,因此PCI总线能够获得比ISA总线更好的整体性能。PCI总线的时钟频率一般在25MHz到33MHz范围内,有些甚至能够达到66MHz或者133MHz,而在64位系统中则最高能达到266MHz。尽管目前PCI设备大多采用32位数据总线,但PCI规范中已经给出了64位的扩展实现,从而使PCI总线能够更好地实现平台无关性,现在PCI总线已经能够用于IA-32、Alpha、PowerPC、SPARC64和IA-64等体系结构中。

PCI总线具有三个非常显著的优点,使得它能够完成最终取代ISA总线这一历史使命:

  • 在计算机和外设间传输数据时具有更好的性能;
  • 能够尽量独立于具体的平台;
  • 可以很方便地实现即插即用。

图2是一个典型的基于PCI总线的计算机系统逻辑示意图,系统的各个部分通过PCI总线和PCI-PCI桥连接在一起。从图中不难看出,CPU和RAM需要通过PCI桥连接到PCI总线0(即主PCI总线),而具有PCI接口的显卡则可以直接连接到主PCI总线上。PCI-PCI桥是一个特殊的PCI设备,它负责将PCI总线0和PCI总线1(即从PCI主线)连接在一起,通常PCI总线1称为PCI-PCI桥的下游(downstream),而PCI总线0则称为PCI-PCI桥的上游(upstream)。图中连接到从PCI总线上的是SCSI卡和以太网卡。为了兼容旧的ISA总线标准,PCI总线还可以通过PCI-ISA桥来连接ISA总线,从而能够支持以前的ISA设备。图中ISA总线上连接着一个多功能I/O控制器,用于控制键盘、鼠标和软驱。

图2 PCI系统示意图
图2 PCI系统示意图

在此我只对PCI总线系统体系结构作了概括性介绍,如果读者想进一步了解,David A Rusling在The Linux Kernel(http://tldp.org/LDP/tlk/dd/pci.html)中对Linux的PCI子系统有比较详细的介绍。


在Linux输  cat /proc/iomem  查看PCI设备情况

拿 VGA视频控制器作一个例子,

4000 0000-4000 03ff : 0000:00:14.0

4000 0000-4000 03ff 是它所映射的内存空间地址,占据内存地址空间1024 bytes的位置

0000:00:14.0   为32位 ;划分为域(16位), 总线(8位),设备(5位)和功能(3位).为什么0x00a0对应的是0000:00:14.0呢,寄存器对应0x00a0就代表着总线(8位),设备(5位)和功能(3位).0x00a0=0000 0000 1010 0000,很容易看出高8位是总线号也就是0。剩下的0xa0=10100000,可以看出如果低3位表示功能号,那么剩下的10100就是设备号,补全成8位的值就是00010100即0x14.


PCI寻址判断系统结构图




二.  PCI 配置



图6.2 PCI配置头

系统中每个PCI设备,包括PCI-PCI桥接器在内,都有一个配置数据结构,它通常位于PCI配置地址空间中。PCI配置头允许系统来标识与控制设备。配置头在PCI配置空间的位置取决于系统中PCI设备的拓扑结构。例如将一个PCI视频卡插入不同的PCI槽,其配置头位置会变化。但对系统没什么影响,系统将找到每个PCI设备与桥接器并使用它们配置头中的信息来配置其寄存器。

典型的办法是用PCI槽相对主板的位置来决定其PCI配置头在配置空间中的偏移。比如主板中的第一个PCI槽的PCI配置头位于配置空间偏移0处,而第二个则位于偏移256处(所有PCI配置头长度都相等,为256字节),其它槽可以由此类推。系统还将提供一种硬件相关机制以便PCI设置代码能正确的辨认出对应PCI总线上所有存在的设备的PCI配置头。通过PCI配置头中的某些域来判断哪些设备存在及哪些设备不存在(这个域叫厂商标志域: Vendor Identification field)。对空PCI槽中这个域的读操作将得到一个值为0xFFFFFFFF的错误信息。

图6.2给出了256字节PCI配置头的结构,它包含以下域:

厂商标识(Vendor Identification)
用来唯一标识PCI设备生产厂家的数值。Digital的PCI厂商标识为0x1011而Intel的为0x8086。
设备标识(Device Identification)
用来唯一标识设备的数值。Digital 21141快速以太设备的设备标识为0x0009。
状态(Status)
此域提供PCI标准定义中此设备的状态信息。
命令(Command)
通过对此域的写可以控制此设备,如允许设备访问PCI I/O内存。
分类代码(Class Code)
此域标识本设备的类型。对于每种类型的视频,SCSI等设备都有标准的分类代码。如SCSI设备分类代码为0x0100。
基地址寄存器(Base Address Registers)
这些寄存器用来决定和分配此设备可以使用的PCI I/O与PCI内存空间的类型,数量及位置。
中断引脚(Interrupt Pin)
PCI卡上的四个物理引脚可以将中断信号从插卡上带到PCI总线上。这四个引脚标准的标记分别为A、B、C及D。中断引脚域描叙此PCI设备使用的引脚号。通常特定设备都是采用硬连接方式。这也是系统启动时,设备总使用相同中断引脚的原因。中断处理子系统用它来管理来自该设备的中断。
中断连线(Interrupt Line)

本设备配置头中的中断连线域用来在PCI初始化代码、设备驱动以及Linux中断处理子系统间传递中断处理过程。虽然本域中记录的这个数值对于设备驱动毫无意义。但是它可以将中断处理过程从PCI卡上正确路由到Linux操作系统中相应的设备驱动中断处理代码中。



三.PCI驱动程序设计

内核为驱动提供的函数:

pci_read_config_byte/word/dword(struct pci_dev *pdev, int offset, int *value)

pci_write_config_byte/word/dword(struct pci_dev *pdev, int offset, int *value)

配置空间的偏移定义在include/linux/pci_regs.h

1.2 PCII/O和内存空间:

从配置区相应寄存器得到I/O区域的基址:

pci_resource_start(struct pci_dev *dev,  int bar)    Bar值的范围为0-5

从配置区相应寄存器得到I/O区域的内存区域长度:

pci_resource_length(struct pci_dev *dev,  int bar)    Bar值的范围为0-5

从配置区相应寄存器得到I/O区域的内存的相关标志:

pci_resource_flags(struct pci_dev *dev,  int bar)    Bar值的范围为0-5

申请I/O端口:

request_mem_region(io_base, length, name)

读写:

inb()  inw()  inl()   outb()     outw()  outl()


关键数据结构

PCI设备上有三种地址空间:PCI的I/O空间、PCI的存储空间和PCI的配置空间。CPU可以访问PCI设备上的所有地址空间,其中I/O空间和存储空间提供给设备驱动程序使用,而配置空间则由Linux内核中的PCI初始化代码使用。内核在启动时负责对所有PCI设备进行初始化,配置好所有的PCI设备,包括中断号以及I/O基址,并在文件/proc/pci中列出所有找到的PCI设备,以及这些设备的参数和属性。
Linux驱动程序通常使用结构(struct)来表示一种设备,而结构体中的变量则代表某一具体设备,该变量存放了与该设备相关的所有信息。好的驱动程序都应该能驱动多个同种设备,每个设备之间用次设备号进行区分,如果采用结构数据来代表所有能由该驱动程序驱动的设备,那么就可以简单地使用数组下标来表示次设备号。
在PCI驱动程序中,下面几个关键数据结构起着非常核心的作用:
  • pci_driver
这个数据结构在文件include/linux/pci.h里,这是Linux内核版本2.4之后为新型的PCI设备驱动程序所添加的,其中最主要的是用于识别设备的id_table结构,以及用于检测设备的函数probe( )和卸载设备的函数remove( ):
struct pci_driver {
    struct list_head node;
    char *name;
    const struct pci_device_id *id_table;
    int  (*probe)  (struct pci_dev *dev, const struct pci_device_id *id);
    void (*remove) (struct pci_dev *dev);
    int  (*save_state) (struct pci_dev *dev, u32 state);
    int  (*suspend)(struct pci_dev *dev, u32 state);
    int  (*resume) (struct pci_dev *dev);
    int  (*enable_wake) (struct pci_dev *dev, u32 state, int enable);
};
 
  • pci_dev
这个数据结构也在文件include/linux/pci.h里,它详细描述了一个PCI设备几乎所有的硬件信息,包括厂商ID、设备ID、各种资源等:
struct pci_dev {
    struct list_head global_list;
    struct list_head bus_list;
    struct pci_bus  *bus;
    struct pci_bus  *subordinate;
    void        *sysdata;
    struct proc_dir_entry *procent;
    unsigned int    devfn;
    unsigned short  vendor;
    unsigned short  device;
    unsigned short  subsystem_vendor;
    unsigned short  subsystem_device;
    unsigned int    class;
    u8      hdr_type;
    u8      rom_base_reg;
    struct pci_driver *driver;
    void        *driver_data;
    u64     dma_mask;
    u32             current_state;
    unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];
    unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];
    unsigned int    irq;
    struct resource resource[DEVICE_COUNT_RESOURCE];
    struct resource dma_resource[DEVICE_COUNT_DMA];
    struct resource irq_resource[DEVICE_COUNT_IRQ];
    char        name[80];
    char        slot_name[8];
    int     active;
    int     ro;
    unsigned short  regs;
    int (*prepare)(struct pci_dev *dev);
    int (*activate)(struct pci_dev *dev);
    int (*deactivate)(struct pci_dev *dev);
};
 
2.基本框架
在用模块方式实现PCI设备驱动程序时,通常至少要实现以下几个部分:初始化设备模块、设备打开模块、数据读写和控制模块、中断处理模块、设备释放模块、设备卸载模块。下面给出一个典型的PCI设备驱动程序的基本框架,从中不难体会到这几个关键模块是如何组织起来的。
/* 指明该驱动程序适用于哪一些PCI设备 */
static struct pci_device_id demo_pci_tbl [] __initdata = {
    {PCI_VENDOR_ID_DEMO, PCI_DEVICE_ID_DEMO,
     PCI_ANY_ID, PCI_ANY_ID, 0, 0, DEMO},
    {0,}
};
/* 对特定PCI设备进行描述的数据结构 */
struct demo_card {
    unsigned int magic;
    /* 使用链表保存所有同类的PCI设备 */
    struct demo_card *next;
   
    /* ... */
}
/* 中断处理模块 */
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
    /* ... */
}

static int __init demo_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)
{
       /*  probe将负责完成对硬件的检测工作*/
}


demo_read(),demo_write(),demo_ioctl(),demo_release()等函数略

/* 设备文件操作接口 */
static struct file_operations demo_fops = {
    owner:      THIS_MODULE,   /* demo_fops所属的设备模块 */
    read:       demo_read,    /* 读设备操作*/
    write:      demo_write,    /* 写设备操作*/
    ioctl:      demo_ioctl,    /* 控制设备操作*/
    mmap:       demo_mmap,    /* 内存重映射操作*/
    open:       demo_open,    /* 打开设备操作*/
    release:    demo_release    /* 释放设备操作*/
    /* ... */
};

/* 设备模块信息 */
static struct pci_driver demo_pci_driver = {
    name:       demo_MODULE_NAME,    /* 设备模块名称 */
    id_table:   demo_pci_tbl,    /* 能够驱动的设备列表 */
    probe:      demo_probe,    /* 查找并初始化设备 */
    remove:     demo_remove    /* 卸载设备模块 */
    /* ... */
};
static int __init demo_init_module (void)
{
     if (!pci_register_driver(&demo_pci_driver))
       
                return -ENODEV;

}
static void __exit demo_cleanup_module (void)
{
    pci_unregister_driver(&demo_pci_driver);
}
/* 加载驱动程序模块入口 */
module_init(demo_init_module);
/* 卸载驱动程序模块入口 */
module_exit(demo_cleanup_module);
 
上面这段代码给出了一个典型的PCI设备驱动程序的框架,是一种相对固定的模式。需要注意的是,同加载和卸载模块相关的函数或数据结构都要在前面加上__init、__exit等标志符,以使同普通函数区分开来。构造出这样一个框架之后,接下去的工作就是如何完成框架内的各个功能模块了。
3.初始化设备模块
在Linux系统下,想要完成对一个PCI设备的初始化,需要完成以下工作:
  • 检查PCI总线是否被Linux内核支持;
  • 检查设备是否插在总线插槽上,如果在的话则保存它所占用的插槽的位置等信息。
  • 读出配置头中的信息提供给驱动程序使用。
当Linux内核启动并完成对所有PCI设备进行扫描、登录和分配资源等初始化操作的同时,会建立起系统中所有PCI设备的拓扑结构,此后当PCI驱动程序需要对设备进行初始化时,一般都会调用如下的代码:
static int __init demo_init_module (void)
{
    /* 检查系统是否支持PCI总线 */
    if (!pci_present())
        return -ENODEV;
    /* 注册硬件驱动程序 */
    if (!pci_register_driver(&demo_pci_driver)) {
        pci_unregister_driver(&demo_pci_driver);
                return -ENODEV;
    }
    /* ... */
  
    return 0;
}
 
驱动程序首先调用函数pci_present( )检查PCI总线是否已经被Linux内核支持,如果系统支持PCI总线结构,这个函数的返回值为0,如果驱动程序在调用这个函数时得到了一个非0的返回值,那么驱动程序就必须得中止自己的任务了。在2.4以前的内核中,需要手工调用pci_find_device( )函数来查找PCI设备,但在2.4以后更好的办法是调用pci_register_driver( )函数来注册PCI设备的驱动程序,此时需要提供一个pci_driver结构,在该结构中给出的probe探测例程将负责完成对硬件的检测工作。
 
static int __init demo_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)
{
    struct demo_card *card;
    /* 启动PCI设备 */
    if (pci_enable_device(pci_dev))
        return -EIO;
    /* 设备DMA标识 */
    if (pci_set_dma_mask(pci_dev, DEMO_DMA_MASK)) {
        return -ENODEV;
    }
    /* 在内核空间中动态申请内存 */
    if ((card = kmalloc(sizeof(struct demo_card), GFP_KERNEL)) == NULL) {
        printk(KERN_ERR "pci_demo: out of memory\n");
        return -ENOMEM;
    }
    memset(card, 0, sizeof(*card));
    /* 读取PCI配置信息 */
    card->iobase = pci_resource_start (pci_dev, 1);
    card->pci_dev = pci_dev;
    card->pci_id = pci_id->device;
    card->irq = pci_dev->irq;
    card->next = devs;
    card->magic = DEMO_CARD_MAGIC;
    /* 设置成总线主DMA模式 */   
    pci_set_master(pci_dev);
    /* 申请I/O资源 */
    request_region(card->iobase, 64, card_names[pci_id->driver_data]);
    return 0;
}
 
4.打开设备模块
在这个模块里主要实现申请中断、检查读写模式以及申请对设备的控制权等。在申请控制权的时候,非阻塞方式遇忙返回,否则进程主动接受调度,进入睡眠状态,等待其它进程释放对设备的控制权。
static int demo_open(struct inode *inode, struct file *file)
{
    /* 申请中断,注册中断处理程序 */
    request_irq(card->irq, &demo_interrupt, SA_SHIRQ,
        card_names[pci_id->driver_data], card)) {
    /* 检查读写模式 */
    if(file->f_mode & FMODE_READ) {
        /* ... */
    }
    if(file->f_mode & FMODE_WRITE) {
       /* ... */
    }
   
    /* 申请对设备的控制权 */
    down(&card->open_sem);
    while(card->open_mode & file->f_mode) {
        if (file->f_flags & O_NONBLOCK) {
            /* NONBLOCK模式,返回-EBUSY */
            up(&card->open_sem);
            return -EBUSY;
        } else {
            /* 等待调度,获得控制权 */
            card->open_mode |= f_mode & (FMODE_READ | FMODE_WRITE);
            up(&card->open_sem);
            /* 设备打开计数增1 */
            MOD_INC_USE_COUNT;
            /* ... */
        }
    }
}
 
5.数据读写和控制信息模块
PCI设备驱动程序可以通过demo_fops 结构中的函数demo_ioctl( ),向应用程序提供对硬件进行控制的接口。例如,通过它可以从I/O寄存器里读取一个数据,并传送到用户空间里:
static int demo_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
    /* ... */
   
    switch(cmd) {
        case DEMO_RDATA:
            /* 从I/O端口读取4字节的数据 */
            val = inl(card->iobae + 0x10);
           
/* 将读取的数据传输到用户空间 */
            return 0;
    }
   
    /* ... */
}
 
事实上,在demo_fops里还可以实现诸如demo_read( )、demo_mmap( )等操作,Linux内核源码中的driver目录里提供了许多设备驱动程序的源代码,找那里可以找到类似的例子。在对资源的访问方式上,除了有I/O指令以外,还有对外设I/O内存的访问。对这些内存的操作一方面可以通过把I/O内存重新映射后作为普通内存进行操作,另一方面也可以通过总线主DMA(Bus Master DMA)的方式让设备把数据通过DMA传送到系统内存中。
6.中断处理模块
PC的中断资源比较有限,只有0~15的中断号,因此大部分外部设备都是以共享的形式申请中断号的。当中断发生的时候,中断处理程序首先负责对中断进行识别,然后再做进一步的处理。
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
    struct demo_card *card = (struct demo_card *)dev_id;
    u32 status;
    spin_lock(&card->lock);
    /* 识别中断 */
    status = inl(card->iobase + GLOB_STA);
    if(!(status & INT_MASK))
    {
        spin_unlock(&card->lock);
        return;  /* not for us */
    }
    /* 告诉设备已经收到中断 */
    outl(status & INT_MASK, card->iobase + GLOB_STA);
    spin_unlock(&card->lock);
   
    /* 其它进一步的处理,如更新DMA缓冲区指针等 */
}
 
7.释放设备模块
释放设备模块主要负责释放对设备的控制权,释放占用的内存和中断等,所做的事情正好与打开设备模块相反:
static int demo_release(struct inode *inode, struct file *file)
{
    /* ... */
   
    /* 释放对设备的控制权 */
    card->open_mode &= (FMODE_READ | FMODE_WRITE);
   
    /* 唤醒其它等待获取控制权的进程 */
    wake_up(&card->open_wait);
    up(&card->open_sem);
   
    /* 释放中断 */
    free_irq(card->irq, card);
   
    /* 设备打开计数增1 */
    MOD_DEC_USE_COUNT;
   
    /* ... */ 
}
 
8.卸载设备模块
卸载设备模块与初始化设备模块是相对应的,实现起来相对比较简单,主要是调用函数pci_unregister_driver( )从Linux内核中注销设备驱动程序:
static void __exit demo_cleanup_module (void)
{
    pci_unregister_driver(&demo_pci_driver);
}
 
 


0 0