3.[个人]C++线程入门到进阶(3)----线程同步之关键段CS 与临界区

来源:互联网 发布:软件自学网站大全 编辑:程序博客网 时间:2024/06/07 03:20

第一部分:线程同步之关键段

1、本文首先介绍下如何使用关键段,然后再深层次的分析下关键段的实现机制与原理。

定义关键段变量:CRITICAL_SECTION g_csThreadParameter, g_csThreadCode;

关键段CRITICAL_SECTION一共就四个函数,使用很是方便。下面是这四个函数的原型和使用说明。

1)函数原型:void InitializeCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:定义关键段变量后必须先初始化。

2)函数原型:void DeleteCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:用完之后记得销毁。

3)函数原型:void EnterCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:系统保证各线程互斥的进入关键段区域。

4)函数原型:void LeaveCriticalSection(LPCRITICAL_SECTIONlpCriticalSection);

函数说明:离开关键段区域。

2、在经典多线程问题中设置二个关键区域。一个是主线程在递增子线程序号时,另一个是各子线程互斥的访问输出全局资源时。详见代码:

[html] view plain copy
  1. #include <stdio.h>  
  2. #include <process.h>  
  3. #include <windows.h>  
  4. long g_nNum;  
  5. unsigned int __stdcall Fun(void *pPM);  
  6. const int THREAD_NUM = 10;  
  7. //关键段变量声明  
  8. CRITICAL_SECTION  g_csThreadParameter, g_csThreadCode;  
  9. int main()  
  10. {  
  11.     printf("     经典线程同步 关键段\n");  
  12.     printf(" -- by MoreWindows( http://blog.csdn.net/MoreWindows ) --\n\n");  
  13.   
  14.     //关键段初始化  
  15.     InitializeCriticalSection(&g_csThreadParameter);  
  16.     InitializeCriticalSection(&g_csThreadCode);  
  17.       
  18.     HANDLE  handle[THREAD_NUM];   
  19.     g_nNum = 0;   
  20.     int i = 0;  
  21.     while (i < THREAD_NUM)   
  22.     {  
  23.         EnterCriticalSection(&g_csThreadParameter);//进入子线程序号关键区域  
  24.         handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL);  
  25.         ++i;  
  26.     }  
  27.     WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);  
  28.   
  29.     DeleteCriticalSection(&g_csThreadCode);  
  30.     DeleteCriticalSection(&g_csThreadParameter);  
  31.     return 0;  
  32. }  
  33. unsigned int __stdcall Fun(void *pPM)  
  34. {  
  35.     int nThreadNum = *(int *)pPM;   
  36.     LeaveCriticalSection(&g_csThreadParameter);//离开子线程序号关键区域  
  37.   
  38.     Sleep(50);//some work should to do  
  39.   
  40.     EnterCriticalSection(&g_csThreadCode);//进入各子线程互斥区域  
  41.     g_nNum++;  
  42.     Sleep(0);//some work should to do  
  43.     printf("线程编号为%d  全局资源值为%d\n", nThreadNum, g_nNum);  
  44.     LeaveCriticalSection(&g_csThreadCode);//离开各子线程互斥区域  
  45.     return 0;  
  46. }  

运行结果如下图:

可以看出来,各子线程已经可以互斥的访问与输出全局资源了,但主线程与子线程之间的同步还是有点问题。这是为什么了?

要解开这个迷,最直接的方法就是先在程序中加上断点来查看程序的运行流程。断点处置示意如下:

然后按F5进行调试,正常来说这两个断点应该是依次轮流执行,但实际调试时却发现不是如此,主线程可以多次通过第一个断点即EnterCriticalSection(&g_csThreadParameter);//进入子线程序号关键区域这一语句。这说明主线程能多次进入这个关键区域!找到主线程和子线程没能同步的原因后,下面就来分析下原因的原因吧。

先找到关键段CRITICAL_SECTION的定义吧,它在WinBase.h中被定义成RTL_CRITICAL_SECTION。而RTL_CRITICAL_SECTION在WinNT.h中声明,它其实是个结构体:

typedef struct _RTL_CRITICAL_SECTION {

PRTL_CRITICAL_SECTION_DEBUGDebugInfo;

LONGLockCount;

LONGRecursionCount;

HANDLEOwningThread; // from the thread's ClientId->UniqueThread

HANDLELockSemaphore;

DWORDSpinCount;

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

各个参数的解释如下:

第一个参数:PRTL_CRITICAL_SECTION_DEBUGDebugInfo; 调试用的。

第二个参数:LONGLockCount; 初始化为-1,n表示有n个线程在等待。

第三个参数:LONGRecursionCount; 表示该关键段的拥有线程对此资源获得关键段次数,初为0。

第四个参数:HANDLEOwningThread; 即拥有该关键段的线程句柄。

第五个参数:HANDLELockSemaphore; 实际上是一个自复位事件。

第六个参数:DWORDSpinCount; 旋转锁的设置,单CPU下忽略

由这个结构可以知道关键段会记录拥有该关键段的线程句柄即关键段是有“线程所有权”概念的。事实上它会用第四个参数OwningThread来记录获准进入关键区域的线程句柄,如果这个线程再次进入,EnterCriticalSection()会更新第三个参数RecursionCount以记录该线程进入的次数并立即返回让该线程进入。其它线程调用EnterCriticalSection()则会被切换到等待状态,一旦拥有线程所有权的线程调用LeaveCriticalSection()使其进入的次数为0时,系统会自动更新关键段并将等待中的线程换回可调度状态

因此可以将关键段比作旅馆的房卡,调用EnterCriticalSection()即申请房卡,得到房卡后自己当然是可以多次进出房间的,在你调用LeaveCriticalSection()交出房卡之前,别人自然是无法进入该房间。

回到这个经典线程同步问题上,主线程正是由于拥有“线程所有权”即房卡,所以它可以重复进入关键代码区域从而导致子线程在接收参数之前主线程就已经修改了这个参数。所以关键段可以用于线程间的互斥,但不可以用于同步。

另外,由于将线程切换到等待状态的开销较大,因此为了提高关键段的性能,Microsoft将旋转锁合并到关键段中,这样EnterCriticalSection()会先用一个旋转锁不断循环,尝试一段时间才会将线程切换到等待状态。下面是配合了旋转锁的关键段初始化函数

函数功能:初始化关键段并设置旋转次数

函数原型:BOOLInitializeCriticalSectionAndSpinCount(LPCRITICAL_SECTIONlpCriticalSection,DWORDdwSpinCount);

函数说明:旋转次数一般设置为4000。

函数功能:修改关键段的旋转次数

函数原型:DWORDSetCriticalSectionSpinCount(LPCRITICAL_SECTIONlpCriticalSection,DWORDdwSpinCount);

《Windows核心编程》第五版的第八章推荐在使用关键段的时候同时使用旋转锁,这样有助于提高性能。值得注意的是如果主机只有一个处理器,那么设置旋转锁是无效的。无法进入关键区域的线程总会被系统将其切换到等待状态。

最后总结下关键段:

1.关键段共初始化化、销毁、进入和离开关键区域四个函数。

2.关键段可以解决线程的互斥问题,但因为具有“线程所有权”,所以无法解决同步问题。

3.推荐关键段与旋转锁配合使用。

文章转载于:http://blog.csdn.net/morewindows/article/details/7442639

--------------------------------------------------------------------------------------------

第二部分:临界区

关于临界区的观念,一般操作系统书上面都有。

适用范围:它只能同步一个进程中的线程,不能跨进程同步。一般用它来做单个进程内的代码快同步,效率比较高

windows中与临界区有关的结构是 CRITICAL_SECTION,关于该结构体的内部结构可参考here

使用时,主线程中要先初始化临界区,最后要删除临界区,具体使用见下面代码:

                                                                              本文地址

从一个例子来说明:假设有三个线程都需要使用打印机,我们可以把打印的代码放到临界区,这样就可以保证每次只有一个线程在使用打印机。

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<string>
 #include<iostream>
 #include<process.h>
 #include<windows.h>
 using namespace std;
 
 //定义一个临界区
 CRITICAL_SECTION g_cs;
 
//线程绑定的函数返回值和参数是确定的,而且一定要__stdcall
unsigned __stdcall threadFun(void *param)
{
    EnterCriticalSection(&g_cs);//进入临界区,如果有其他线程则等待
    cout<<*(string *)(param)<<endl;
    LeaveCriticalSection(&g_cs);//退出临界区,其他线程可以进来了
    return 1;
}
 
 
int main()
{
    //初始化临界区
    InitializeCriticalSection(&g_cs);
 
    HANDLE hth1, hth2, hth3;
    string s1 = "first", s2 = "second", s3 = "third";
 
    //创建线程
    hth1 = (HANDLE)_beginthreadex(NULL, 0, threadFun, &s1, 0, NULL);
    hth2 = (HANDLE)_beginthreadex(NULL, 0, threadFun, &s2, 0, NULL);
    hth3 = (HANDLE)_beginthreadex(NULL, 0, threadFun, &s3, 0, NULL);
 
    //等待子线程结束
    WaitForSingleObject(hth1, INFINITE);
    WaitForSingleObject(hth2, INFINITE);
    WaitForSingleObject(hth3, INFINITE);
 
    //一定要记得关闭线程句柄
    CloseHandle(hth1);
    CloseHandle(hth2);
    CloseHandle(hth3);
 
    //删除临界区
    DeleteCriticalSection(&g_cs);
}

 

再看另外一个问题:编写一个程序,开启3个线程,这3个线程的ID分别为A、B、C,每个线程将自己的ID在屏幕上打印10遍,要求输出结果必须按ABC的顺序显示;如:ABCABC….依次递推, 仿照文章windows多线程同步--信号量中的代码,我们把信号量替换成临界区。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include<string>
 #include<iostream>
 #include<process.h>
 #include<windows.h>
 using namespace std;
 //声明3个临界区
CRITICAL_SECTION  g_cs1, g_cs2, g_cs3;
 
//线程绑定的函数返回值和参数是确定的,而且一定要__stdcall
unsigned __stdcall threadFunA(void *)
{
    for(int i = 0; i < 10; i++){
        EnterCriticalSection(&g_cs1);//进入临界区
        cout<<"A";
        LeaveCriticalSection(&g_cs2);//离开临界区
    }
    return 1;
}
unsigned __stdcall threadFunB(void *)
{
    for(int i = 0; i < 10; i++){
        EnterCriticalSection(&g_cs2);//进入临界区
        cout<<"B";
        LeaveCriticalSection(&g_cs3);//离开临界区
    }
    return 2;
}
unsigned __stdcall threadFunC(void *)
{
    for(int i = 0; i < 10; i++){
        EnterCriticalSection(&g_cs3);//进入临界区
        cout<<"C";
        LeaveCriticalSection(&g_cs1);//离开临界区
    }
    return 3;
}
 
 
int main()
{
    //初始化临界区
    InitializeCriticalSection(&g_cs1);
    InitializeCriticalSection(&g_cs2);
    InitializeCriticalSection(&g_cs3);
 
    HANDLE hth1, hth2, hth3;
 
    //创建线程
    hth1 = (HANDLE)_beginthreadex(NULL, 0, threadFunA, NULL, 0, NULL);
    hth2 = (HANDLE)_beginthreadex(NULL, 0, threadFunB, NULL, 0, NULL);
    hth3 = (HANDLE)_beginthreadex(NULL, 0, threadFunC, NULL, 0, NULL);
 
    //等待子线程结束
    WaitForSingleObject(hth1, INFINITE);
    WaitForSingleObject(hth2, INFINITE);
    WaitForSingleObject(hth3, INFINITE);
 
    //一定要记得关闭线程句柄
    CloseHandle(hth1);
    CloseHandle(hth2);
    CloseHandle(hth3);
 
    //删除临界区
    DeleteCriticalSection(&g_cs1);
    DeleteCriticalSection(&g_cs2);
    DeleteCriticalSection(&g_cs3);
}

 

image

为什么会这样呢,因为临界区有所有权的概念,即某个线程进入临界区后,就拥有该临界区的所有权,在他离开临界区之前,他可以无限次的再次进入该临界区,上例中线程A获得临界区1的所有权后,在线程C调用LeaveCriticalSection(&g_cs1)之前,A是可以无限次的进入临界区1的。利用信号量之所以可以实现题目的要求,是因为信号量没有所有权的概念,某个线程获得信号量后,如果信号量的值为0,那么他一定要等到信号量被释放时,才能再次获得


0 0
原创粉丝点击