cs231n作业1--KNN

来源:互联网 发布:linux给用户设置密码 编辑:程序博客网 时间:2024/06/05 14:17

KNN算法:
1、算法思想:kNN算法则是从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别。该算法涉及3个主要因素:训练集、距离或相似的衡量、k的大小。
2、优缺点:需要存储训练集,把测试样本分别与训练集中每一个数据进行比较,存储与计算读很耗费资源。由于要存储大量训练样本集,所以就SVM、softmax分类器就利用权重来记录样本信息(此处用记录样本信息,是因为在可视化权重能够发现,可视化图像和样本很相像),然后进行分类。
3、代码实现:
k_nearest_neighbor.py

import numpy as np#from past.builtins import xrangeclass KNearestNeighbor(object):  """ a kNN classifier with L2 distance """  def __init__(self):    pass  def train(self, X, y):    """    Train the classifier. For k-nearest neighbors this is just     memorizing the training data.    Inputs:    - X: A numpy array of shape (num_train, D) containing the training data      consisting of num_train samples each of dimension D.    - y: A numpy array of shape (N,) containing the training labels, where         y[i] is the label for X[i].    """    self.X_train = X    self.y_train = y  def predict(self, X, k=1, num_loops=0):    """    Predict labels for test data using this classifier.    Inputs:    - X: A numpy array of shape (num_test, D) containing test data consisting         of num_test samples each of dimension D.    - k: The number of nearest neighbors that vote for the predicted labels.    - num_loops: Determines which implementation to use to compute distances      between training points and testing points.    Returns:    - y: A numpy array of shape (num_test,) containing predicted labels for the      test data, where y[i] is the predicted label for the test point X[i].      """    if num_loops == 0:      dists = self.compute_distances_no_loops(X)    elif num_loops == 1:      dists = self.compute_distances_one_loop(X)    elif num_loops == 2:      dists = self.compute_distances_two_loops(X)    else:      raise ValueError('Invalid value %d for num_loops' % num_loops)    return self.predict_labels(dists, k=k)  def compute_distances_two_loops(self, X):    """    Compute the distance between each test point in X and each training point    in self.X_train using a nested loop over both the training data and the     test data.    Inputs:    - X: A numpy array of shape (num_test, D) containing test data.    Returns:    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]      is the Euclidean distance between the ith test point and the jth training      point.    """    num_test = X.shape[0]    num_train = self.X_train.shape[0]    dists = np.zeros((num_test, num_train))    for i in xrange(num_test):      for j in xrange(num_train):        #####################################################################        # TODO:                                                             #        # Compute the l2 distance between the ith test point and the jth    #        # training point, and store the result in dists[i, j]. You should   #        # not use a loop over dimension.                                    #        #####################################################################        dists[i][j] = np.sqrt(np.sum((X[i,:]-self.X_train[j,:])**2))        #####################################################################        #                       END OF YOUR CODE                            #        #####################################################################    return dists  def compute_distances_one_loop(self, X):    """    Compute the distance between each test point in X and each training point    in self.X_train using a single loop over the test data.    Input / Output: Same as compute_distances_two_loops    """    num_test = X.shape[0]    num_train = self.X_train.shape[0]    dists = np.zeros((num_test, num_train))    for i in xrange(num_test):      #######################################################################      # TODO:                                                               #      # Compute the l2 distance between the ith test point and all training #      # points, and store the result in dists[i, :].                        #      #######################################################################      dists[i,:] = np.sqrt(np.sum((X[i,:]-self.X_train)**2,axis=1))      #######################################################################      #                         END OF YOUR CODE                            #      #######################################################################    return dists  def compute_distances_no_loops(self, X):    """    Compute the distance between each test point in X and each training point    in self.X_train using no explicit loops.    Input / Output: Same as compute_distances_two_loops    """    num_test = X.shape[0]    num_train = self.X_train.shape[0]    dists = np.zeros((num_test, num_train))     #########################################################################    # TODO:                                                                 #    # Compute the l2 distance between all test points and all training      #    # points without using any explicit loops, and store the result in      #    # dists.                                                                #    #                                                                       #    # You should implement this function using only basic array operations; #    # in particular you should not use functions from scipy.                #    #                                                                       #    # HINT: Try to formulate the l2 distance using matrix multiplication    #    #       and two broadcast sums.                                         #    #########################################################################    ##利用完全平方公式求得距离矩阵    dists = np.multiply(np.dot(X,self.X_train.T),-2)    sq1 = np.sum(np.square(X),axis=1,keepdims = True)    sq2 = np.sum(np.square(self.X_train),axis=1)    dists = np.add(dists,sq1)    dists = np.add(dists,sq2)    dists = np.sqrt(dists)    #########################################################################    #                         END OF YOUR CODE                              #    #########################################################################    return dists  def predict_labels(self, dists, k=1):    """    Given a matrix of distances between test points and training points,    predict a label for each test point.    Inputs:    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]      gives the distance betwen the ith test point and the jth training point.    Returns:    - y: A numpy array of shape (num_test,) containing predicted labels for the      test data, where y[i] is the predicted label for the test point X[i].      """    num_test = dists.shape[0]    y_pred = np.zeros(num_test)    for i in xrange(num_test):      # A list of length k storing the labels of the k nearest neighbors to      # the ith test point.      closest_y = []      #########################################################################      # TODO:                                                                 #      # Use the distance matrix to find the k nearest neighbors of the ith    #      # testing point, and use self.y_train to find the labels of these       #      # neighbors. Store these labels in closest_y.                           #      # Hint: Look up the function numpy.argsort.                             #      #########################################################################      closest_y = self.y_train[np.argsort(dists[i,:])[:k]]      #########################################################################      # TODO:                                                                 #      # Now that you have found the labels of the k nearest neighbors, you    #      # need to find the most common label in the list closest_y of labels.   #      # Store this label in y_pred[i]. Break ties by choosing the smaller     #      # label.                                                                #      #########################################################################      y_pred[i] = np.argmax(np.bincount(closest_y))      #########################################################################      #                           END OF YOUR CODE                            #       #########################################################################    return y_pred

knn.ipynb

num_folds = 5k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]X_train_folds = []y_train_folds = []################################################################################# TODO:                                                                        ## Split up the training data into folds. After splitting, X_train_folds and    ## y_train_folds should each be lists of length num_folds, where                ## y_train_folds[i] is the label vector for the points in X_train_folds[i].     ## Hint: Look up the numpy array_split function.                                #################################################################################X_train_folds = np.array_split(X_train,num_folds)y_train_folds = np.array_split(y_train,num_folds)#################################################################################                                 END OF YOUR CODE                             ################################################################################## A dictionary holding the accuracies for different values of k that we find# when running cross-validation. After running cross-validation,# k_to_accuracies[k] should be a list of length num_folds giving the different# accuracy values that we found when using that value of k.k_to_accuracies = {}################################################################################# TODO:                                                                        ## Perform k-fold cross validation to find the best value of k. For each        ## possible value of k, run the k-nearest-neighbor algorithm num_folds times,   ## where in each case you use all but one of the folds as training data and the ## last fold as a validation set. Store the accuracies for all fold and all     ## values of k in the k_to_accuracies dictionary.                               #################################################################################for k in k_choices:    k_to_accuracies[k] = []for k in k_choices:    print ('evaluating k=%d' %k)    for j in range(num_folds):        X_train_cv = np.vstack(X_train_folds[0:j]+X_train_folds[j+1:])        X_test_cv = X_train_folds[j]        #print len(y_train_folds), y_train_folds[0].shape        y_train_cv = np.hstack(y_train_folds[0:j]+y_train_folds[j+1:])  #size:4000        y_test_cv = y_train_folds[j]        #print 'Training data shape: ', X_train_cv.shape        #print 'Training labels shape: ', y_train_cv.shape        #print 'Test data shape: ', X_test_cv.shape        #print 'Test labels shape: ', y_test_cv.shape        classifier.train(X_train_cv, y_train_cv)        dists_cv = classifier.compute_distances_no_loops(X_test_cv)        #print 'predicting now'        y_test_pred = classifier.predict_labels(dists_cv, k)        num_correct = np.sum(y_test_pred == y_test_cv)        accuracy = float(num_correct) / y_test_cv.shape[0]        k_to_accuracies[k].append(accuracy)#################################################################################                                 END OF YOUR CODE                             ################################################################################## Print out the computed accuraciesfor k in sorted(k_to_accuracies):    for accuracy in k_to_accuracies[k]:        print('k = %d, accuracy = %f' % (k, accuracy))
1 0
原创粉丝点击