浅析muduo库中的定时器设施

来源:互联网 发布:上海定制服装淘宝网 编辑:程序博客网 时间:2024/05/17 16:03

一个设计良好的定时器在服务端的应用程序上至关重要,muduo定时器的实现陈硕大牛在书中已经详细的谈过,笔者尝试从源码的角度解读定时器的实现,如果理解不对,欢迎指正。

在muduo的定时器系统中,一共由四个类:Timestamp,Timer,TimeId,TimerQueue组成。其中最关键的是Timer和TimerQueue两个类。此文只解释初读时让人非常迷惑的TimerQueue类,这个类是整个定时器设施的核心,其他三个类简介其作用。

其中Timestamp是一个以int64_t表示的微秒级绝对时间,而Timer则表示一个定时器的到时事件,是否具有重复唤醒的时间等,TimerId表示在在TimerQueue中对Timer的索引。

TimerQueue

下面是muduo定时器中最重要的TimerQueue类,是整个定时器的核心,初读时让人非常迷惑,最主要的原因还是没有搞清楚Timer类中的成员的意思。

/**Timer.h**/ private:  const TimerCallback callback_;//定时器回调函数  Timestamp expiration_;//绝对的时间  const double interval_;//如果有重复属性,超时的时间间隔  const bool repeat_;//是否有重复  const int64_t sequence_;//定时器序号  static AtomicInt64 s_numCreated_;//定时器计数

有了上述成员的意义,我们便可以介绍TimerQueue的功能了。

/**TimerQueue.h**/class TimerQueue : boost::noncopyable{ public:  TimerQueue(EventLoop* loop);  ~TimerQueue();  ///  /// Schedules the callback to be run at given time,  /// repeats if @c interval > 0.0.  ///  /// Must be thread safe. Usually be called from other threads.  TimerId addTimer(const TimerCallback& cb,                   Timestamp when,                   double interval);//往定时器队列中添加定时器#ifdef __GXX_EXPERIMENTAL_CXX0X__  TimerId addTimer(TimerCallback&& cb,                   Timestamp when,                   double interval);#endif  void cancel(TimerId timerId);//取消某个定时器 private:  // FIXME: use unique_ptr<Timer> instead of raw pointers.  typedef std::pair<Timestamp, Timer*> Entry;//到期的时间和指向其的定时器  typedef std::set<Entry> TimerList;  typedef std::pair<Timer*, int64_t> ActiveTimer;//定时器和其定时器的序列号  typedef std::set<ActiveTimer> ActiveTimerSet;  void addTimerInLoop(Timer* timer);  void cancelInLoop(TimerId timerId);  // called when timerfd alarms  void handleRead();  // move out all expired timers  std::vector<Entry> getExpired(Timestamp now);//返回超时的定时器列表  void reset(const std::vector<Entry>& expired, Timestamp now);  bool insert(Timer* timer);//在两个序列中插入定时器  EventLoop* loop_;  const int timerfd_;//只有一个定时器,防止同时开启多个定时器,占用多余的文件描述符  Channel timerfdChannel_;//定时器关心的channel对象  // Timer list sorted by expiration  TimerList timers_;//定时器集合(有序)  // for cancel()  // activeTimerSet和timer_保存的是相同的数据  // timers_是按照到期的时间排序的,activeTimerSet_是按照对象地址排序  ActiveTimerSet activeTimers_;//保存正在活动的定时器(无序)  bool callingExpiredTimers_; /* atomic *///是否正在处理超时事件  ActiveTimerSet cancelingTimers_;//保存的是取消的定时器(无序)};

上述代码中有三处让人感到惊喜的地方:

  • 首先,整个TimerQueue之打开一个timefd,用以观察定时器队列队首的到期事件。其原因是因为set容器是一个有序队列,以<排序,就是说整个队列中,Timer的到期时间时从小到大排列的,正是因为这样,才能做到节省系统资源的目的。

  • 其次,在整个TimerQueue类中有三个容器,一个表示有序的Timer队列,一个表示正在活动的,无序的定时器队列(用于与有序的定时器队列同步),还有一个表示取消的定时器队列(在重新启动一个有固定时间间隔定时器时,首先判断是否友重复属性,其次就是是否在已经取消的队列中)。第二个定时器队列是否多余?还没有想明白。

  • 最后,整个定时器队列采用了muduo典型的事件分发机制,可以使的定时器的到期时间像fd一样在Loop线程中处理。

/**TimerQueue.cc**/int createTimerfd(){//创建非阻塞timefd  int timerfd = ::timerfd_create(CLOCK_MONOTONIC,                                 TFD_NONBLOCK | TFD_CLOEXEC);  if (timerfd < 0)  {    LOG_SYSFATAL << "Failed in timerfd_create";  }  return timerfd;}struct timespec howMuchTimeFromNow(Timestamp when){//现在距离超时还有多久  int64_t microseconds = when.microSecondsSinceEpoch()                         - Timestamp::now().microSecondsSinceEpoch();  if (microseconds < 100)  {    microseconds = 100;  }  struct timespec ts;  ts.tv_sec = static_cast<time_t>(      microseconds / Timestamp::kMicroSecondsPerSecond);  ts.tv_nsec = static_cast<long>(      (microseconds % Timestamp::kMicroSecondsPerSecond) * 1000);  return ts;}void readTimerfd(int timerfd, Timestamp now){//处理超时时间,超时后,timefd变为可读,howmany表示超时的次数  uint64_t howmany;//将事件读出来,免得陷入Loop忙碌状态  ssize_t n = ::read(timerfd, &howmany, sizeof howmany);  LOG_TRACE << "TimerQueue::handleRead() " << howmany << " at " << now.toString();  if (n != sizeof howmany)  {    LOG_ERROR << "TimerQueue::handleRead() reads " << n << " bytes instead of 8";  }}void resetTimerfd(int timerfd, Timestamp expiration){//重新设置定时器描述符关注的定时事件  // wake up loop by timerfd_settime()  struct itimerspec newValue;  struct itimerspec oldValue;  bzero(&newValue, sizeof newValue);  bzero(&oldValue, sizeof oldValue);  newValue.it_value = howMuchTimeFromNow(expiration);//获得与现在的时间差值,然后设置关注事件  int ret = ::timerfd_settime(timerfd, 0, &newValue, &oldValue);  if (ret)  {    LOG_SYSERR << "timerfd_settime()";  }}}}}using namespace muduo;using namespace muduo::net;using namespace muduo::net::detail;TimerQueue::TimerQueue(EventLoop* loop)  : loop_(loop),    timerfd_(createTimerfd()),    timerfdChannel_(loop, timerfd_),    timers_(),    callingExpiredTimers_(false){  timerfdChannel_.setReadCallback(      boost::bind(&TimerQueue::handleRead, this));  // we are always reading the timerfd, we disarm it with timerfd_settime.  timerfdChannel_.enableReading();//设置Channel的常规步骤}TimerQueue::~TimerQueue(){  timerfdChannel_.disableAll();//channel不再关注任何事件  timerfdChannel_.remove();//在三角循环中删除此Channel  ::close(timerfd_);  // do not remove channel, since we're in EventLoop::dtor();  for (TimerList::iterator it = timers_.begin();      it != timers_.end(); ++it)  {    delete it->second;//释放timer对象  }}TimerId TimerQueue::addTimer(const TimerCallback& cb,                             Timestamp when,                             double interval){//添加新的定时器  Timer* timer = new Timer(cb, when, interval);  loop_->runInLoop(      boost::bind(&TimerQueue::addTimerInLoop, this, timer));  return TimerId(timer, timer->sequence());}#ifdef __GXX_EXPERIMENTAL_CXX0X__TimerId TimerQueue::addTimer(TimerCallback&& cb,                             Timestamp when,                             double interval){  Timer* timer = new Timer(std::move(cb), when, interval);  loop_->runInLoop(      boost::bind(&TimerQueue::addTimerInLoop, this, timer));  return TimerId(timer, timer->sequence());}#endifvoid TimerQueue::cancel(TimerId timerId){//取消定时器  loop_->runInLoop(      boost::bind(&TimerQueue::cancelInLoop, this, timerId));}void TimerQueue::addTimerInLoop(Timer* timer){  loop_->assertInLoopThread();  bool earliestChanged = insert(timer);//是否将timer插入set的首部  //如果插入首部,更新timrfd关注的到期时间  if (earliestChanged)  {    resetTimerfd(timerfd_, timer->expiration());//启动定时器  }}void TimerQueue::cancelInLoop(TimerId timerId){//取消要关注的重复事件  loop_->assertInLoopThread();  assert(timers_.size() == activeTimers_.size());  ActiveTimer timer(timerId.timer_, timerId.sequence_);//获得索引  ActiveTimerSet::iterator it = activeTimers_.find(timer);  if (it != activeTimers_.end())  {//删除Timers_和activeTimers_中的Timer    size_t n = timers_.erase(Entry(it->first->expiration(), it->first));    assert(n == 1); (void)n;    delete it->first; // FIXME: no delete please    activeTimers_.erase(it);//删除活动的timer  }  else if (callingExpiredTimers_)  {//将删除的timer加入到取消的timer队列中    cancelingTimers_.insert(timer);//取消的定时器与重新启动定时器有冲突  }  assert(timers_.size() == activeTimers_.size());}void TimerQueue::handleRead(){  loop_->assertInLoopThread();  Timestamp now(Timestamp::now());  readTimerfd(timerfd_, now);//读timerFd,防止一直出现可读事件,造成loop忙碌  std::vector<Entry> expired = getExpired(now);//获得超时的定时器  callingExpiredTimers_ = true;//将目前的状态调整为处理超时状态  cancelingTimers_.clear();//将取消的定时器清理掉  //更新完成马上就是重置,重置时依赖已经取消的定时器的条件,所以要将取消的定时器的队列清空  // safe to callback outside critical section  for (std::vector<Entry>::iterator it = expired.begin();      it != expired.end(); ++it)//逐个调用超时的定时器的回调  {    it->second->run();  }  callingExpiredTimers_ = false;//退出处理超时定时器额状态  reset(expired, now);//把具有重复属性的定时器重新加入定时器队列中}std::vector<TimerQueue::Entry> TimerQueue::getExpired(Timestamp now){//获得当前已经超时的timer  assert(timers_.size() == activeTimers_.size());  std::vector<Entry> expired;//存储超时timer的队列  Entry sentry(now, reinterpret_cast<Timer*>(UINTPTR_MAX));  TimerList::iterator end = timers_.lower_bound(sentry);//返回的一个大于等于now的timer,小于now的都已经超时  assert(end == timers_.end() || now < end->first);  std::copy(timers_.begin(), end, back_inserter(expired));//将timer_的begin到上述获得end迭代器元素添加到expired的末尾  timers_.erase(timers_.begin(), end);//在timer_中删除刚才被添加的元素  for (std::vector<Entry>::iterator it = expired.begin();      it != expired.end(); ++it)  {//在Activetimer_的同步中删除timer    ActiveTimer timer(it->second, it->second->sequence());    size_t n = activeTimers_.erase(timer);    assert(n == 1); (void)n;  }  assert(timers_.size() == activeTimers_.size());//再次将timer_和activetimer同步  return expired;//返回超时的timerQueue}void TimerQueue::reset(const std::vector<Entry>& expired, Timestamp now){//将具有超时属性的定时器重新加入定时器队列  Timestamp nextExpire;  for (std::vector<Entry>::const_iterator it = expired.begin();      it != expired.end(); ++it)  {    ActiveTimer timer(it->second, it->second->sequence());    if (it->second->repeat()        && cancelingTimers_.find(timer) == cancelingTimers_.end())    {//判断是否具有重复属性并且不在取消的定时器队列中      it->second->restart(now);//重新设置定时器的到期时间,并且将重新设置后的定时器插入timer_和activeTimer_中      insert(it->second);    }    else    {      // FIXME move to a free list      delete it->second; // FIXME: no delete please    }  }  if (!timers_.empty())  {//如果目前的队列不为空,获得目前队首的到期时间    nextExpire = timers_.begin()->second->expiration();  }  if (nextExpire.valid())  {//如果到期时间不为0,重新设置timerfd应该关注的时间    resetTimerfd(timerfd_, nextExpire);  }}bool TimerQueue::insert(Timer* timer){//将Timer插入到两个同步的TimeQueue中,最关键的一个函数  loop_->assertInLoopThread();  assert(timers_.size() == activeTimers_.size());//判断两个Timer队列的同步bool earliestChanged = false;  Timestamp when = timer->expiration();//获得Timer的事件  TimerList::iterator it = timers_.begin();//得到Timer的begin  if (it == timers_.end() || when < it->first)  {//判断是否要将这个timer插入队首,如果是,更新timefd关注的到期事件    earliestChanged = true;  }  {//将Timer中按顺序插入timer_,set是有序集合,默认关键字<排列    std::pair<TimerList::iterator, bool> result      = timers_.insert(Entry(when, timer));    assert(result.second); (void)result;  }  {//随意插入进入activeTimer_    std::pair<ActiveTimerSet::iterator, bool> result      = activeTimers_.insert(ActiveTimer(timer, timer->sequence()));    assert(result.second); (void)result;  }  assert(timers_.size() == activeTimers_.size());//再次同步两个Timer  return earliestChanged;}

上述代码注释足够多,还是那个问题,无序的set是否有出现的必要?

0 0