人脸检测(一)

来源:互联网 发布:洛丽塔电影知乎 编辑:程序博客网 时间:2024/06/05 13:13

有天导师突然找我,让我搞一些关于人脸的应用,比如换个脸什么的……没办法那就先把人脸自动检测出来吧。人脸检测,即检测出图像中存在的人脸,并把它的位置准确地框出来。是人脸特征点检测、人脸识别的基础。可以谷歌Face Detection Benchmark寻找数据集和优秀论文,上thinkface论坛,搜集人脸检测数据集和方法。常用的人脸检测数据集,包括FDDB、AFLW、WIDER FACE等。随着近年来随着深度学习的快速发展,涌现出来很多优秀的人脸检测算法。
例如,FDDB数据库就提交了很多出色的人脸检测算法,例如采用级联CNN网络的人脸检测方法:A Convolutioanal Neural Network Cascade,改进的faster rcnn做人脸检测:Face Detection using Deep Learning:An Improved Faster RCNN Approach,还有对小脸检测非常成功的Finding tiny faces等等,建议找个三篇左右认真研读就行了,也不需要去一一实现,没有太大意义。
另外,像opencv、dlib、libfacedetect等也提供了人脸检测的接口。因为人脸检测是很基本的任务,所以很多公司都做了人脸检测的工作,而且做得很牛,例如face++。
这里写图片描述

下面仅介绍本人尝试并实现了的几种常见的人脸检测方法:

1.单个CNN人脸检测方法
2.级联CNN人脸检测方法
3.OpenCV人脸检测方法
4.Dlib人脸检测方法
5.libfacedetect人脸检测方法
6.Seetaface人脸检测方法


1.单个CNN人脸检测方法

该人脸检测方法的有点在于,思路简单,实现简单;缺点是速度较慢(在一块普通的gpu上对一副1000x600的图像进行多尺度检测也可能花上一两秒),检测效果还可以,但得到的人脸框不够准确。
首先训练一个判断人脸非人脸的二分类器。例如采用卷积神经网络caffenet进行二分类,可以在imagenet数据集训练过的模型,利用自己的人脸数据集,进行微调。也可以自定义卷积网络进行训练,为了能检测到更小的人脸目标,我们一般采用小一点的卷积神经网络作为二分类模型,减小图像输入尺寸,加快预测速度。
然后将训练好的人脸判断分类网络的全连接层改为卷积层,这样网络变成了全卷积网络,可以接受任意输入图像大小,图像经过全卷积网络将得到特征图,特征图上每一个“点”对应该位置映射到原图上的感受野区域属于人脸的概率,将属于人脸概率大于设定阈值的视为人脸候选框。
图像上人脸的大小是变化的,为了适应这种变化,最暴力的办法就是使用图像金字塔的方式,将待检测的图像缩放到不同大小,以进行多尺度人脸检测。对多个尺度下检测出来的所有人脸候选框,做非极大值抑制NMS,得到最后人脸检测的结果。

这里写图片描述

这里提供用caffe实现该方法的数据集、模型文件和代码打包的 下载链接

下面介绍用caffe实现该方法的具体过程。因为需要训练判断是否为人脸的CNN分类器,准备好正负训练样本,然后得到caffe训练所需的的数据集文件(由于采用的是48x48的网络,原始数据集归一化到了48x48)。
这里写图片描述
这里CNN采用的是DeepID卷积神经网络,网络结构如下,它的输入只有48x48大小,而采用AlexNet或CaffeNet网络会增加时间开销。
这里写图片描述
准备好网络模型文件train_val.prototxt和超参数配置文件solver.prototxt之后(下载链接中都有),开始训练,迭代10w次得到caffemodel。对测试集face_test文件夹中的图像进行测试,准备好测试用的deploy.prototxt。
测试单张图像的python脚本face_test.py如下:

# -*- coding: utf-8 -*-"""Created on Fri Mar 10 23:02:06 2017@author: Administrator"""import numpy as npimport caffesize = 48image_file = 'C:/Users/Administrator/Desktop/caffe/data/face/face_test/0/253_faceimage07068.jpg'#测试图片路径model_def = 'C:/Users/Administrator/Desktop/caffe/models/face/deploy.prototxt'model_weights = 'C:/Users/Administrator/Desktop/caffe/models/face/_iter_10000.caffemodel'net = caffe.Net(model_def, model_weights, caffe.TEST)    # 加载均值文件  也可指定数值做相应的操作#mu = np.load('C:/Users/Administrator/Desktop/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy')  ###caffe 自带的文件#mu = mu.mean(1).mean(1)  # average over pixels to obtain the mean (BGR) pixel valuestransformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) ##设定图片的shape格式(1,3,48,48),大小由deploy 文件指定#transformer.set_mean('data', mu)            # 每个通道减去均值# python读取的图片文件格式为H×W×K,需转化为K×H×Wtransformer.set_transpose('data', (2,0,1))  #改变维度的顺序,由原始图片(48,48,3)变为(3,48,48) # python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换transformer.set_raw_scale('data', 255)      # 缩放到【0,255】之间transformer.set_channel_swap('data', (2,1,0))   #交换通道,将图片由RGB变为BGR#net.blobs['data'].reshape(1,3,size, size)  # 将输入图片格式转化为合适格式(与deploy文件相同)#上面这句,第一参数:图片数量 第二个参数 :通道数 第三个参数:图片高度 第四个参数:图片宽度image = caffe.io.load_image(image_file) #加载图片,始终是得到一副(h,w,3),rgb,0~1,float32的图像net.blobs['data'].data[...]  = transformer.preprocess('data', image) #用上面的transformer.preprocess来处理刚刚加载图片caffe.set_device(0)caffe.set_mode_gpu()output = net.forward()output_prob = output['prob'][0].argmax()  # 给出概率最高的是第几类,需要自己对应到我们约定的类别去print output_probprint output['prob'][0][0] #或print output['prob'][0,1]

批量测试计算准确度的matlab脚本face_test.m如下:

%注意:caffe中维度顺序为(N,C,H,W),而matcaffe中Blob维度顺序为(W,H,C,N),即完全相反%matlab加载图像为(h,w,c),得到的是rgb,而caffe使用的是bgrfunction test_face()clear;addpath('..');%添加上级目录搜索路径addpath('.');%添加当前目录搜索路径caffe.set_mode_gpu(); %设置gpu模式caffe.set_device(0); %gpu的id为0%caffe.set_mode_cpu();net_model = 'C:\Users\Administrator\Desktop\caffe\models\face\deploy.prototxt'; %网络模型deploy.prototxtnet_weights = 'C:\Users\Administrator\Desktop\caffe\models\face\_iter_10000.caffemodel'; %训练好的模型文件%net_model = 'C:\Users\Administrator\Desktop\caffe\models\face2\deploy.prototxt'; %网络模型deploy.prototxt%net_weights = 'C:\Users\Administrator\Desktop\caffe\models\face2\_iter_100000.caffemodel'; %训练好的模型文件phase = 'test'; %不做训练,而是测试net = caffe.Net(net_model, net_weights, phase); %获取网络tic;error = 0;total = 0;%批量读取图像进行测试datadir = 'C:\Users\Administrator\Desktop\caffe\data\face\face_test\0';imagefiles = dir(datadir);for i = 3:length(imagefiles)    im = imread(fullfile(datadir,imagefiles(i).name));    [input_data,flag] = prepare_image(im); %图像数据预处理    if flag ~= 1        continue;    end    input_data ={input_data};    net.forward(input_data); %做前向传播    scores = net.blobs('prob').get_data();    [best_score,best] = max(scores);%     fprintf('*****%.3f %d %d\n',best_score,best - 1,classid(i-2));    best = best - 1; %matlab中从1开始,减1变成从0开始    if best ~= 0        error = error + 1;        fprintf('-----error: %d\n',error);        errorfile = ['error\' imagefiles(i).name];        %imwrite(im,errorfile);    end    total = total + 1;enddatadir_1 = 'C:\Users\Administrator\Desktop\caffe\data\face\face_test\1';imagefiles_1 = dir(datadir_1);for i = 3:length(imagefiles_1)    im_1 = imread(fullfile(datadir_1,imagefiles_1(i).name));    [input_data_1,flag] = prepare_image(im_1); %图像数据预处理    if flag ~= 1        continue;    end    input_data_1 = {input_data_1};    net.forward(input_data_1); %做前向传播    scores_1 = net.blobs('prob').get_data();    [best_score_1,best_1] = max(scores_1);%     fprintf('*****%.3f %d %d\n',best_score,best - 1,classid(i-2));    best_1 = best_1 - 1; %matlab中从1开始,减1变成从0开始    if best_1 ~= 1        error = error + 1;        fprintf('error: %d-----\n',error);        errorfile = ['face_error\' imagefiles_1(i).name];        %imwrite(im,errorfile);    end    total = total + 1;endtotal_time = toc;%打印到屏幕上fprintf('total_time: %.3f s\n',total_time);fprintf('aver_time: %.3f s\n',total_time/total);fprintf('error/total: %d/%d\n',error,total);fprintf('accurary: %.4f\n',1.0 - (error*1.0)/total);%disp(['error/total: ',num2str(error),'/',num2str(length(imagefiles)-2)]);endfunction [im_data,flag] = prepare_image(im)%d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');%mean_data = d.mean_data;%resize to 227 x 227im_data = [];im = imresize(im,[227 227],'bilinear');%im = imresize(im,[48 48],'bilinear');[h,w,c] = size(im);if c ~= 3    flag = 0;    return;endflag = 1;%caffe的blob顺序是[w h c num]%matlab:[h w c] rgb -> caffe:[w h c] bgrim_data = im(:,:,[3,2,1]); %rgb -> bgrim_data = permute(im_data,[2,1,3]); %[h w c] -> [w h c][w,h,~] = size(im_data);%ImageNet数据集的均值具有统计规律,这里可以直接拿来使用mean_data(:,:,1) = ones(w,h) .* 104; %bmean_data(:,:,2) = ones(w,h) .* 117; %gmean_data(:,:,3) = ones(w,h) .* 123; %rim_data = single(im_data);%im_data = im_data - single(mean_data); %因为训练集和测试集都没有做去均值,所以这里也不做(如果只是这里做了去均值效果会变差)end

在测试集上进行批量测试,准确率达到了98%。
这里写图片描述
为了利用CNN分类器来检测人脸,需要将CNN网络中的全连接层替换为卷积层得到全卷积网络,修改好的全卷积网络deploy_full_conv.prototxt内容如下:

name: "face_full_conv_net"layer {  name: "data"  type: "Input"  top: "data"  input_param { shape: { dim: 1 dim: 3 dim: 48 dim: 48 } }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  convolution_param {    num_output: 20    kernel_size: 3    stride: 1    pad: 1  }}layer {  name: "relu1"  type: "ReLU"  bottom: "conv1"  top: "conv1"}layer {  name: "norm1"  type: "LRN"  bottom: "conv1"  top: "conv1"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "pool1"  type:  "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "conv2"  type: "Convolution"  bottom: "pool1"  top: "conv2"  convolution_param {    num_output: 40    kernel_size: 3    pad: 1  }}layer {  name: "relu2"  type: "ReLU"  bottom: "conv2"  top: "conv2"}layer {  name: "norm2"  type: "LRN"  bottom: "conv2"  top: "conv2"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "conv3"  type: "Convolution"  bottom: "pool2"  top: "conv3"  convolution_param {    num_output: 60    kernel_size: 3    pad: 1  }}layer {  name: "relu3"  type: "ReLU"  bottom: "conv3"  top: "conv3"}layer {  name: "norm3"  type: "LRN"  bottom: "conv3"  top: "conv3"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "pool3"  type: "Pooling"  bottom: "conv3"  top: "pool3"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "conv4"  type: "Convolution"  bottom: "pool3"  top: "conv4"  convolution_param {    num_output: 80    kernel_size: 3    pad: 1  }}layer {  name: "relu4"  type: "ReLU"  bottom: "conv4"  top: "conv4"}layer {  name: "norm4"  type: "LRN"  bottom: "conv4"  top: "conv4"  lrn_param {    local_size: 5    alpha: 0.0001    beta: 0.75  }}layer {  name: "pool4"  type: "Pooling"  bottom: "conv4"  top: "pool4"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}#修改为卷积层layer {  name: "fc5-conv" ### fc5  type: "Convolution" ### InnerProduct  bottom: "pool4"  top: "fc5-conv" ### fc5  #inner_product_param {   # num_output: 160  #}  convolution_param {    num_output: 160    kernel_size: 3  }}layer {  name: "relu5"  type: "ReLU"  bottom: "fc5-conv"  top: "fc5-conv"}layer {  name: "drop5"  type:  "Dropout"  bottom: "fc5-conv"  top: "fc5-conv"  dropout_param {    dropout_ratio: 0.5  }}#修改为卷积层layer {  name: "fc6-conv" ### fc6  type:  "Convolution" ### InnerProduct  bottom: "fc5-conv"  top: "fc6-conv"  #inner_product_param {   # num_output: 2  #}  convolution_param {    num_output: 2    kernel_size: 1  }}layer {  name: "prob"  type: "Softmax"  bottom: "fc6-conv"  top: "prob"}

还需要将训练好的_iter_100000.caffemodel模型文件也转化为全卷积的,得到的_iter_100000_full_conv.caffemodel,转换脚本convert_full_conv.py如下:

# -*- coding: utf-8 -*-"""Created on Fri Mar 10 21:14:09 2017@author: Administrator"""###首先需要手动将deploy.prototxt修改成全卷积的deploy_full_conv.prorotxt,特别要注意全连接层修改成卷积层的细节###将训练好的分类模型caffemodel转换成可以接受任意输入大小,最后输出特征图的全卷积模型caffemodelimport numpy as npimport caffemodel_def = 'C:/Users/Administrator/Desktop/caffe/models/face/deploy.prototxt'model_weights = 'C:/Users/Administrator/Desktop/caffe/models/face/_iter_100000.caffemodel'net = caffe.Net(model_def,                model_weights,                caffe.TEST)params = ['fc5', 'fc6']# fc_params = {name: (weights, biases)}fc_params = {pr: (net.params[pr][0].data, net.params[pr][1].data) for pr in params}for fc in params:    print '{} weights are {} dimensional and biases are {} dimensional'.format(fc, fc_params[fc][0].shape, fc_params[fc][1].shape)# Load the fully convolutional network to transplant the parameters.net_full_conv = caffe.Net('./deploy_full_conv.prototxt',                           './_iter_100000.caffemodel',                          caffe.TEST)params_full_conv = ['fc5-conv', 'fc6-conv']# conv_params = {name: (weights, biases)}conv_params = {pr: (net_full_conv.params[pr][0].data, net_full_conv.params[pr][1].data) for pr in params_full_conv}for conv in params_full_conv:    print '{} weights are {} dimensional and biases are {} dimensional'.format(conv, conv_params[conv][0].shape, conv_params[conv][1].shape)for pr, pr_conv in zip(params, params_full_conv):    conv_params[pr_conv][0].flat = fc_params[pr][0].flat  # flat unrolls the arrays    conv_params[pr_conv][1][...] = fc_params[pr][1]net_full_conv.save('./_iter_100000_full_conv.caffemodel')print 'success'

最后,就可以用deploy_full_conv.prototxt和_iter_100000_full_conv.caffemodel对任意输入尺寸的图像进行人脸检测了。对单张图像进行人脸检测的python脚本face_detect如下:

# -*- coding: utf-8 -*-import numpy as npimport cv2 #需要安装opencv,然后将opencv安装目录下build\python\2.7\x64\cv2.pyd拷贝到python的安装目录下Anaconda2\Lib\site-packages文件夹下from operator import itemgetterimport timeimport caffecaffe.set_device(0)caffe.set_mode_gpu()def IoU(rect_1, rect_2):    '''    :param rect_1: list in format [x11, y11, x12, y12, confidence]    :param rect_2:  list in format [x21, y21, x22, y22, confidence]    :return:    returns IoU ratio (intersection over union) of two rectangles    '''    x11 = rect_1[0]    # first rectangle top left x    y11 = rect_1[1]    # first rectangle top left y    x12 = rect_1[2]    # first rectangle bottom right x    y12 = rect_1[3]    # first rectangle bottom right y    x21 = rect_2[0]    # second rectangle top left x    y21 = rect_2[1]    # second rectangle top left y    x22 = rect_2[2]    # second rectangle bottom right x    y22 = rect_2[3]    # second rectangle bottom right y    x_overlap = max(0, min(x12,x22) -max(x11,x21))    y_overlap = max(0, min(y12,y22) -max(y11,y21))    intersection = x_overlap * y_overlap    union = (x12-x11) * (y12-y11) + (x22-x21) * (y22-y21) - intersection    return float(intersection) / uniondef IoM(rect_1, rect_2):    '''    :param rect_1: list in format [x11, y11, x12, y12, confidence]    :param rect_2:  list in format [x21, y21, x22, y22, confidence]    :return:    returns IoM ratio (intersection over min-area) of two rectangles    '''    x11 = rect_1[0]    # first rectangle top left x    y11 = rect_1[1]    # first rectangle top left y    x12 = rect_1[2]    # first rectangle bottom right x    y12 = rect_1[3]    # first rectangle bottom right y    x21 = rect_2[0]    # second rectangle top left x    y21 = rect_2[1]    # second rectangle top left y    x22 = rect_2[2]    # second rectangle bottom right x    y22 = rect_2[3]    # second rectangle bottom right y    x_overlap = max(0, min(x12,x22) -max(x11,x21))    y_overlap = max(0, min(y12,y22) -max(y11,y21))    intersection = x_overlap * y_overlap    rect1_area = (y12 - y11) * (x12 - x11)    rect2_area = (y22 - y21) * (x22 - x21)    min_area = min(rect1_area, rect2_area)    return float(intersection) / min_areadef NMS(rectangles,threshold=0.3):    '''    :param rectangles:  list of rectangles, which are lists in format [x11, y11, x12, y12, confidence]    :return:    list of rectangles after local NMS    '''    rectangles = sorted(rectangles, key=itemgetter(4), reverse=True) #按照confidence降序排列    result_rectangles = rectangles[:]  # list to return    '''    while not result_rectangles == []:        rect = result_rectangles[0]        for index in range(1,len(result_rectangles)):            iou = IoU(rect,result_rectangles[index])            if    '''    number_of_rects = len(result_rectangles)    #threshold = 0.3     # threshold of IoU of two rectangles    cur_rect = 0    while cur_rect < number_of_rects - 1:     # start from first element to second last element        rects_to_compare = number_of_rects - cur_rect - 1      # elements after current element to compare        cur_rect_to_compare = cur_rect + 1    # start comparing with element after current        while rects_to_compare > 0:      # while there is at least one element after current to compare            if (IoU(result_rectangles[cur_rect], result_rectangles[cur_rect_to_compare]) >= threshold or IoM(result_rectangles[cur_rect], result_rectangles[cur_rect_to_compare]) >= 0.3):                del result_rectangles[cur_rect_to_compare]      # delete the rectangle                number_of_rects -= 1            else:                cur_rect_to_compare += 1    # skip to next rectangle            rects_to_compare -= 1        cur_rect += 1   # finished comparing for current rectangle    return result_rectanglesdef face_detection(imgFile) :    #model_def = 'C:/Users/Administrator/Desktop/caffe/models/face/deploy_full_conv.prototxt'     #model_weights = 'C:/Users/Administrator/Desktop/caffe/models/face/_iter_10000_full_conv.caffemodel'    model_def = 'C:/Users/Administrator/Desktop/caffe/models/face2/deploy_full_conv.prototxt'     model_weights = 'C:/Users/Administrator/Desktop/caffe/models/face2/_iter_100000_full_conv.caffemodel'    net_full_conv = caffe.Net(model_def,                              model_weights,                              caffe.TEST)    mu = np.load('C:/Users/Administrator/Desktop/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy')    mu = mu.mean(1).mean(1)  # average over pixels to obtain the mean (BGR) pixel values    #print 'mean-subtracted values:' , zip('BGR', mu)    start_time = time.time()    scales = [] #尺度变换和尺度变换因子    factor = 0.793700526    img = cv2.imread(imgFile) #opencv读取的图像为(h,w,c),bgr,caffe的blob维度为(n,c,h,w),使用的也是rgb    print img.shape    largest = min(2, 4000/max(img.shape[0:2])) #4000是人脸检测的经验值    scale = largest    minD = largest*min(img.shape[0:2])    while minD >= 48:  #网络的输入是227x227??? #多尺度变换         scales.append(scale) #添加当前尺度        scale *= factor #乘以尺度变换因子        minD *= factor #得到新的尺度    true_boxes = []    for scale in scales:        scale_img = cv2.resize(img,((int(img.shape[1] * scale), int(img.shape[0] * scale)))) #将图像缩放到各尺度        cv2.imwrite('C:/Users/Administrator/Desktop/caffe/scale_img.jpg',scale_img)        im = caffe.io.load_image('C:/Users/Administrator/Desktop/caffe/scale_img.jpg') #利用caffe的io接口加载图像,始终是得到一副(h,w,3),rgb,0~1,float32的图像        net_full_conv.blobs['data'].reshape(1,3,scale_img.shape[0],scale_img.shape[1]) #重新设置网络data层Blob维度为:1,3,height,width                    transformer = caffe.io.Transformer({'data': net_full_conv.blobs['data'].data.shape}) #为data层创建transformer        transformer.set_transpose('data', (2,0,1)) #(h,w,3)->(3,h,w)        #transformer.set_mean('data', mu) #设置均值,由于训练集没有去均值,这里也不去均值        transformer.set_raw_scale('data', 255.0) #rescale from [0,1] to [0,255]        transformer.set_channel_swap('data', (2,1,0)) #RGB -> BGR        net_full_conv.blobs['data'].data[...] = transformer.preprocess('data', im)        out = net_full_conv.forward()        print out['prob'][0,0].shape #输出层prob结果,行x列        #print out['prob'][0].argmax(axis=0)        featureMap = out['prob'][0,0] #out['prob'][0][0]属于人脸的概率特征图        stride = 16 #特征图感受野大小        cellSize = 48 #网络输入尺寸        thresh = 0.95        for (y,x),prob in np.ndenumerate(featureMap):            if prob > thresh :                true_boxes.append([float(x*stride)/scale,                                    float(y*stride)/scale,                                    float(x*stride + cellSize - 1)/scale,                                    float(y*stride + cellSize - 1)/scale,                                    prob])    true_boxes = NMS(true_boxes,0.2) #非极大值抑制    for true_box in true_boxes:        (x1, y1, x2, y2) = true_box[0:4] #取出人脸框的坐标        cv2.rectangle(img, (int(x1),int(y1)), (int(x2),int(y2)), (0,255,0)) #画人脸框    end_time = time.time()    print (end_time-start_time)*1000,'ms'    cv2.imwrite('output.jpg',img)    cv2.namedWindow('test win')      cv2.imshow('test win', img)              cv2.waitKey(0)      cv2.destroyWindow('test win')if __name__ == "__main__":    imgFile = 'C:/Users/Administrator/Desktop/caffe/matlab/demo/1.jpg'    face_detection(imgFile)
0 0