LSH

来源:互联网 发布:linux init 0 编辑:程序博客网 时间:2024/05/16 10:35
在数据挖掘中经常需要用到比较两个东西的相似度。
下面先主要说一下文档的相似度。 如果是判断两个文档是否完全相同,问题就变得很简单,只要简单地逐字符比较即可。但是在很多情况下并不是这样,比如网站文章的转载,主体内容部分是相同的,但是不同网页本身有自己的Logo、导航栏、版权声明等等,不能简单地直接逐字符比较。

定义两个集合S,T的Jaccard相似度: Sim(S,T) = |S,T的交集| / |S,T的并集|

1、Shingling
就是把每相邻的k个字符作为一个元素,这样整篇文档就变成了一个集合。比如文档是”banana”,若k=2,转化以后得到集合为{“ba”,”an”,”na”},于是又变成了前述集合相似度的问题。关于k值的设置,显然过小或过大都不合适,据说比较短的比如email之类可以设k=5,比如长的文章如论文之类可以设k=9。
Shingling方法里的k值比较大时,可以对每个片段进行一次hash。比如k=9,我们可以把每个9字节的片段hash成一个32bit的整数。这样既节省了空间又简化了相等的判断。这样两步的方法和4-shingling占用空间相同,但是会有更好的效果。因为字符的分布不是均匀的,在4-shingling中实际上大量的4字母组合没有出现过,而如果是9-shingling再hash成4个字节就会均匀得多。

2、Min-Hashing
首先把问题抽象一下,用矩阵的每一列表示一个集合,矩阵的行表示集合中所有可能的元素。若集合c包含元素r,则矩阵中c列r行的元素为1,否则为0。这个矩阵叫做特征矩阵,往往是很稀疏的。以下设此矩阵有R行C列。
所谓minhash是指把一个集合(即特征矩阵的一列)映射为一个0..R-1之间的值。具体方法是,以等概率随机抽取一个0..R-1的排列,依此排列查找第一次出现1的行。
例如有集合S1={a,d}, S2={c}, S3 = {b,d,e}, S4 = {a,c,d},特征矩阵即如下 
     S1 S2 S3 S4 
0a 1   0   0   1 
1b 0   0   1   0 
2c 0   1   0   1 
3d 1   0   1    1 
4e 0 0 1 0 
设随机排列为43201(edcab),按edcab的顺序查看S1列,发现第一次出现1的行是d(即第3行),所以h(S1) = 3,同理有h(S2)=2, h(S3)=4, h(S4)=3。 
此处有一重要而神奇的结论:对于等概率的随机排列,两个集合的minhash值相同的概率等于两个集合的Jaccard相似度
即Sim(C1,C2)和h(C1)、h(C2)的相似性是一样的
于是方法就有了,我们多次抽取随机排列得到n个minhash函数h1,h2,…,hn,依此对每一列都计算n个minhash值。对于两个集合,看看n个值里面对应相等的比例,即可估计出两集合的Jaccard相似度。可以把每个集合的n个minhash值列为一列,得到一个n行C列的签名矩阵。因为n可远小于R,这样我们就把集合压缩表示了,并且仍能近似计算出相似度在具体的计算中,可以不用真正生成随机排列,只要有一个hash函数从[0..R-1]映射到[0..R-1]即可。因为R是很大的,即使偶尔存在多个值映射为同一值也没大的影响。

3、Locality-sensitive Hashing
(1)挑选出candidate pairs
these pairs of signatures that we need to test for similarity.
(2)optional check

在很多应用领域中,我们面对和需要处理的数据往往是海量并且具有很高的维度,怎样快速地从海量的高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据成为了一个难点和问题。如果是低维的小数据集,我们通过线性查找(Linear Search)就可以容易解决,但如果是对一个海量的高维数据集采用线性查找匹配的话,会非常耗时,因此,为了解决该问题,我们需要采用一些类似索引的技术来加快查找过程,通常这类技术称为最近邻查找(Nearest  Neighbor,AN),例如K-d tree;或近似最近邻查找(Approximate Nearest  Neighbor, ANN),例如K-d tree with BBF, Randomized Kd-trees, Hierarchical K-means Tree。而LSH是ANN中的一类方法。
我们知道,通过建立Hash Table的方式我们能够得到O(1)的查找时间性能,其中关键在于选取一个hash function,将原始数据映射到相对应的桶内(bucket, hash bin),例如对数据求模:h = x mod w,w通常为一个素数。在对数据集进行hash 的过程中,会发生不同的数据被映射到了同一个桶中(即发生了冲突collision),这一般通过再次哈希将数据映射到其他空桶内来解决。这是普通Hash方法或者叫传统Hash方法,其与LSH有些不同之处。



局部敏感哈希示意图(from: Piotr Indyk)


LSH的基本思想是:将原始数据空间中的两个相邻数据点通过相同的映射或投影变换(projection)后,这两个数据点在新的数据空间中仍然相邻的概率很大,而不相邻的数据点被映射到同一个桶的概率很小。也就是说,如果我们对原始数据进行一些hash映射后,我们希望原先相邻的两个数据能够被hash到相同的桶内,具有相同的桶号。对原始数据集合中所有的数据都进行hash映射后,我们就得到了一个hash table,这些原始数据集被分散到了hash table的桶内,每个桶会落入一些原始数据,属于同一个桶内的数据就有很大可能是相邻的,当然也存在不相邻的数据被hash到了同一个桶内。因此,如果我们能够找到这样一些hash functions,使得经过它们的哈希映射变换后,原始空间中相邻的数据落入相同的桶内的话,那么我们在该数据集合中进行近邻查找就变得容易了,我们只需要将查询数据进行哈希映射得到其桶号,然后取出该桶号对应桶内的所有数据,再进行线性匹配即可查找到与查询数据相邻的数据。换句话说,我们通过hash function映射变换操作,将原始数据集合分成了多个子集合,而每个子集合中的数据间是相邻的且该子集合中的元素个数较小,因此将一个在超大集合内查找相邻元素的问题转化为了在一个很小的集合内查找相邻元素的问题,显然计算量下降了很多。
那具有怎样特点的hash functions才能够使得原本相邻的两个数据点经过hash变换后会落入相同的桶内?
这些hash function需要满足以下两个条件
(1)如果d(x,y) ≤ d1, 则h(x) = h(y)的概率至少为p1;
(2)如果d(x,y) ≥ d2, 则h(x) = h(y)的概率至多为p2; 其中d(x,y)表示x和y之间的距离,d1 < d2, h(x)和h(y)分别表示对x和y进行hash变换。
满足以上两个条件的hash functions称为(d1,d2,p1,p2)-sensitive
而通过一个或多个(d1,d2,p1,p2)-sensitive的hash function对原始数据集合进行hashing生成一个或多个hash table的过程称为Locality-sensitive Hashing。

4、Amplifying Hash Function:AND and OR
AND:make lower prob. approach 0 while the higher does not.
OR:make the upper prob. approach 1 while the lower does not.

关键:
上述的LSH是一个family of functions的例子,他们的function是minhash。
family of functions能combined起来从而很强的区分两个数据点的距离。

我们也可以探索其他的family function,这些function可以应用到the space of sets and the Jaccard distance;或者another space 和anotherdistance measure
0 0
原创粉丝点击