HotSpot中的垃圾收集

来源:互联网 发布:weka apriori算法 编辑:程序博客网 时间:2024/05/18 05:59

指导理念:分代收集,根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

OopMap(用于枚举 GC Roots )和安全点: http://dsxwjhf.iteye.com/blog/2201685 

查找GC roots对全栈进行扫描很浪费时间(GC所关心的含义就是“这块数据是不是指针”。 ),所以采用“空间换时间”的方法,维护一组成为OopMap的数据结构。

可以把oopMap简单理解成是调试信息。 在源代码里面每个变量都是有类型的,但是编译之后的代码就只有变量在栈上的位置了。oopMap就是一个附加的信息,告诉你栈上哪个位置本来是个什么东西。

这个信息是在JIT编译时跟机器码一起产生的。因为只有编译器知道源代码跟产生的代码的对应关系。 

每个被JIT编译过后的方法也会在一些特定的位置记录下OopMap,记录了执行到该方法的某条指令的时候,栈上和寄存器里哪些位置是引用。这样GC在扫描栈的时候就会查询这些OopMap就知道哪里是引用了。这些特定的位置主要在: 
1、循环的末尾 
2、方法临返回前 / 调用方法的call指令后 
3、可能抛异常的位置


这种位置被称为“安全点”(safepoint)。之所以要选择一些特定的位置来记录OopMap,是因为如果对每条指令(的位置)都记录OopMap的话,这些记录就会比较大,那么空间开销会显得不值得。选用一些比较关键的点来记录就能有效的缩小需要记录的数据量,但仍然能达到区分引用的目的。因为这样,HotSpot中GC不是在任意位置都可以进入,而只能在safepoint处进入。 
而仍然在解释器中执行的方法则可以通过解释器里的功能自动生成出OopMap出来给GC用。

平时这些OopMap都是压缩了存在内存里的;在GC的时候才按需解压出来使用。 
HotSpot是用“解释式”的方式来使用OopMap的,每次都循环变量里面的项来扫描对应的偏移量。

【对Java线程中的JNI方法,它们既不是由JVM里的解释器执行的,也不是由JVM的JIT编译器生成的,所以会缺少OopMap信息。那么GC碰到这样的栈帧该如何维持准确性呢? 
HotSpot的解决方法是:所有经过JNI调用边界(调用JNI方法传入的参数、从JNI方法传回的返回值)的引用都必须用“句柄”(handle)包装起来。JNI需要调用Java API的时候也必须自己用句柄包装指针。在这种实现中,JNI方法里写的“jobject”实际上不是直接指向对象的指针,而是先指向一个句柄,通过句柄才能间接访问到对象。这样在扫描到JNI方法的时候就不需要扫描它的栈帧了——只要扫描句柄表就可以得到所有从JNI方法能访问到的GC堆里的对象。 
但这也就意味着调用JNI方法会有句柄的包装/拆包装的开销,是导致JNI方法的调用比较慢的原因之一。】


安全点就是所有的线程在要GC的时候停顿的位置。那么如何让所有的线程都到安全点上在停顿下来呢?这里有两种方案可以选择:

  1. 抢先式中断
  2. 主动式中断

在抢先式中断中不需要线程主动配合,在GC发生的时候就让所有线程都中断,如果发现哪个线程中断的地方不在安全点上,那么就恢复线程,然后让它跑到安全点上。
而主动式中断是让GC在需要中断线程的时候不直接对线程操作,设置一个标志,让各个线程主动轮询这个标志,如果中断标志位真时就让自己中断。

目前几乎没有虚拟机采用抢先式中断了。


安全区:

针对被sleep或者blocked的线程(因为其无法主动走到安全点):

我们也可以把Safe Region看做是被扩展了Safepoint。在这个区域中,引用关系不会发生变化。

在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。


RememberSet(后文中有提到)


-----------------------------------------------------------------

常见的垃圾收集器:


并行与并发:

并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

并发(Concurrent):指用户线程与垃圾收集线程“同时”执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。



1.Serial收集器和Parnew收集器:

相同点:进行垃圾收集时需要暂停其他工作线程;新生代中使用复制算法。

不同点:serial是单线程的,parnew是多线程的。 serial依然是虚拟机运行在Client模式下的默认新生代收集器;parnew仍是server端首选的新生代收集器,因为能和CMS搭配使用


2.ParallelScavenge收集器

新生代收集器,原理和parnew基本相同。但是着重点在于吞吐量设计。

吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%

该收集器可以设置停顿时间参数和吞吐量参数。如果单纯地降低停顿参数,jvm会缩小新生代的容量并提高GC的频率,因此会降低吞吐量。所以两者要同时设计。


3.Serial Old收集器和Parallel Old收集器

使用标记-整理算法。Serial Old是Serial的老年版本,Parallel Old是Parallel Scavenge收集器的老年代版本



4.CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。


(1)初始标记(CMS initial mark):stop the world 。标记一下GC Roots能直接关联到的对象,速度很快。需要暂停其他进程。

(2)并发标记(CMS concurrentmark):执行GC roots tracing的过程

(3)重新标记(CMS remark):stop the world 。为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

(4)并发清除(CMS concurrentsweep)

 

整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

 

1)CMS收集器对CPU资源非常敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程而导致应用程序变慢,总吞吐量会降低。
2)CMS收集器无法处理浮动垃圾,可能会出现“Concurrent Mode Failure(并发模式故障)”失败而导致Full GC产生。
浮动垃圾:由于CMS并发清理阶段用户线程还在运行着,伴随着程序运行自然就会有新的垃圾不断产生,这部分垃圾出现的标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC中再清理。这些垃圾就是“浮动垃圾”。
3)CMS是一款“标记--清除”算法实现的收集器,容易出现大量空间碎片。当空间碎片过多,将会给大对象分配带来很大的麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。


5.G1收集器

G1(Garbage-First),最前沿成果之一。

G1具备如下特点。

并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。

 分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。

 空间整合:与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。

 可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。


重点:

G1收集器之所以能实现可预测的停顿,是因为其根据各个region内垃圾堆积的价值大小(能收回的空间和收集所需时间的比)来在后台维护一个优先列表,优先回收价值最大的Region(这也就是Garbage-First名称的来由),提高了收集效率。


实现MinorGC(young GC):

在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。


G1运作步骤:

1、初始标记;2、并发标记;3、最终标记;4、筛选回收

上面几个步骤的运作过程和CMS有很多相似之处。初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS的值,让下一个阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这一阶段需要停顿线程,但是耗时很短,并发标记阶段是从GC Root开始对堆中对象进行可达性分析,找出存活的对象,这阶段时耗时较长,但可与用户程序并发执行。而最终标记阶段则是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remenbered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这一阶段需要停顿线程,但是可并行执行。最后在筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划。



比较下G1和CMS收集器:

1. G1使用标记整理算法,相对于CMS的标记清楚算法,G1保证了内存中的连续空间

2. G1不需要其他收集器配合就可以管理整个GC堆,仍保留了分代的概念,但是对于分代有另外的处理

3. G1实现了可预测的停顿

4. G1实现了Region的优先处理,优先回收价值最大的Region



0 0
原创粉丝点击