写在SVM之前——凸优化与对偶问题

来源:互联网 发布:淘宝克隆别人店铺宝贝 编辑:程序博客网 时间:2024/05/17 23:24

本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到。考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇。所以,本文也不会涉及优化问题的许多深层问题,只是个人知识范围内所了解的SVM中涉及到的优化问题基础。

一、凸优化问题

在优化问题中,凸优化问题由于具有优良的性质(局部最优解即是全局最优解),受到广泛研究。

对于一个含约束的优化问题:

{minxf(x)s.t.xC{minxf(x)s.t.x∈C

其中,f(x)f(x) 为一个凸函数,变量xx 的可行域CC 是一个凸集,那么这个优化问题称为一个凸优化问题。

将上面的约束条件的形式更加明确一点,一个凸优化问题可以写成:

minxf(x)s.t.gi(x)0hi(x)=0{minxf(x)s.t.gi(x)≤0hi(x)=0

其中,f(x)f(x) 当然仍然为一个凸函数,但对约束条件有一定要求:gi(x)gi(x) 是凸函数;hi(x)hi(x) 为仿射函数。这样的要求当然是为了保证可行域是一个凸集。

不等式约束中gi(x)gi(x)为凸函数,而凸函数的水平截集{x|gi(x)α}{x|gi(x)≤α} 是一个凸集(凸函数的性质),这就使得不等式约束保证了可行域为凸集;

对于等式约束hi(x)=0hi(x)=0 可以写成:

{hi(x)0hi(x)0{hi(x)≤0hi(x)≥0

要使得满足条件的xx 组成的集合为凸集,就要求hi(x)hi(x) 既是一个凸函数,又是一个凹函数,这样hi(x)hi(x)便只能是仿射函数了。

以上便是凸优化问题的一般形式。常见的线性规划、二次规划、二次约束二次规划等优化问题都是凸优化问题。

二、拉格朗日对偶

抛开凸优化问题,回到一般的优化问题。

一般的优化问题可以写成以下形式:

minxf(x)s.t.gi(x)0hi(x)=0{minxf(x)s.t.gi(x)≤0hi(x)=0

当然,这里对f(x)f(x)gi(x)gi(x)hi(x)hi(x) 都是没有要求的。

根据拉格朗日方法,对应的拉格朗日函数为:

L(x,α,β)=f(x)+iαigi(x)+iβihi(x)L(x,α,β)=f(x)+∑iαigi(x)+∑iβihi(x)

其中αα 、ββ为拉格朗日乘数(都是向量,其长度分别对应于不等式约束和等式约束的个数),且αi0αi≥0ββ 任意。

定义函数:

θP(x)=maxα,β:αi0L(x,α,β)θP(x)=maxα,β:αi≥0L(x,α,β)

容易发现:

θP(x)={f(x)+gi(x)0&hi(x)=0gi(x)>0||hi(x)0θP(x)={f(x)gi(x)≤0&hi(x)=0+∞gi(x)>0||hi(x)≠0

如果原来的约束条件都满足那么L(x,α,β)=f(x)+iαigi(x)+iβihi(x)L(x,α,β)=f(x)+∑iαigi(x)+∑iβihi(x),最后一项为零,第二项要取得最大值,由于gi(x)0gi(x)≤0,所以只能取α=0⃗ α=0→ ,使其取得最大值0,这样

θP(x)=maxα,β:αi0L(x,α,β)=f(x)θP(x)=maxα,β:αi≥0L(x,α,β)=f(x)

如果违背了原来的约束条件,比如存在某一个约束gi(x)>0gi(x)>0,那么可以取αiαi 任意大,这样θP(x)=+θP(x)=+∞。违反等式约束hi(x)=0hi(x)=0的情况是类似的。

所以可以认为θP(x)θP(x)是对原理优化问题中的约束条件进行了吸收,是原来的约束优化问题变为无约束优化问题(相对于原来变量xx 无约束了),即原来的优化问题可以写成:    

minxθP(x)=minxmaxα,β:αi0L(x,α,β)(1)(1)minxθP(x)=minxmaxα,β:αi≥0L(x,α,β)                                                   

现在,称(1)为原问题,这和最初的有约束问题是等价的。

将(1)中min和max交换顺序得到对偶问题:

maxα,β:αi0θD(α,β)=maxα,β:αi0minxL(x,α,β)(2)(2)maxα,β:αi≥0θD(α,β)=maxα,β:αi≥0minxL(x,α,β)          

其中

θD(α,β)=minxL(x,α,β)θD(α,β)=minxL(x,α,β)

pp∗ 为原问题的最优解,对应最优解的最优变量取值为xx∗,则p=f(x)p∗=f(x∗) ;

dd∗ 为对偶问题的最优解,对应最优解的最优变量取值为αα∗ββ∗,则d=θD(α,β)d∗=θD(α∗,β∗)

下面来说明dpd∗≤p∗

对于任意α,βα,βα0α≥0 ):

θD(α,β)=minxL(x,α,β)L(x,α,β)=f(x)+iαigi(x)+iβihi(x)f(x)=pθD(α,β)=minxL(x,α,β)≤L(x∗,α,β)=f(x∗)+∑iαigi(x∗)+∑iβihi(x∗)≤f(x∗)=p∗

第一个不等号成立是显然的,这是由minxL(x,α,β)minxL(x,α,β) 的定义直接得到的;第二个不等号成立是因为xx∗ 是一个可行解,所以约束条件gi(x)0gi(x)≤0 和hi(x)=0hi(x)=0 都满足,所以iαigi(x)0∑iαigi(x∗)≤0 、iβihi(x)=0∑iβihi(x∗)=0

由于以上推导过程中ααββ的任意性,所以d=θD(α,β)pd∗=θD(α∗,β∗)≤p∗ ,所以求解对偶问题是在最大化原问题最优解的下界。

通常,对偶问题相对于原问题有比较好的形式(有看到“无论原问题形式如何,对偶问题都是一个凸优化问题”的说法,但没见过证明。),这样,当原问题不好求解时,可以转而求解对偶问题。问题是一般情况下有dpd∗≤p∗,所以求解对偶问题只能得到原问题解的下界,不能保证d=pd∗=p∗

当原问题满足一些条件时,可以保证d=pd∗=p∗

Slater条件存在xx ,使得不等式约束gi(x)0gi(x)≤0严格成立,即gi(x)=0gi(x)=0

当原问题为一凸优化问题,且满足Slater条件时,有d=pd∗=p∗,这样就原问题和对偶问题的解一致,求解对偶问题即可。显然,Slater是凸优化问题与其对偶问题等价的一个充分条件。

KKT条件是原问题与对偶问题等价的必要条件。考虑一般优化问题(不一定是凸优化),如果有d=pd∗=p∗,则:

d=θD(α,β)=minxL(x,α,β)L(x,α,β)=f(x)+iαigi(x)+iβihi(x)f(x)=pd∗=θD(α∗,β∗)=minxL(x,α∗,β∗)≤L(x∗,α∗,β∗)=f(x∗)+∑iαi∗gi(x∗)+∑iβi∗hi(x∗)≤f(x∗)=p∗

由于d=pd∗=p∗,所以上面推导过程中所以的不等号“ ”应该取到等号。第一个等号得到minxL(x,α,β)=L(x,α,β)minxL(x,α∗,β∗)=L(x∗,α∗,β∗),这说明xx∗ 是L(x,α,β)L(x,α∗,β∗)的一个极值点,所以L(x,α,β)L(x,α∗,β∗)xx∗ 处的偏导为零,L(x,α,β)x|x=0∂L(x,α∗,β∗)∂x|x∗=0 ;第二个等号得到f(x)+iαigi(x)+iβihi(x)=f(x)f(x∗)+∑iαi∗gi(x∗)+∑iβi∗hi(x∗)=f(x∗),所以iβihi(x)=0∑iβi∗hi(x∗)=0iαigi(x)=0∑iαi∗gi(x∗)=0iβihi(x)=0∑iβi∗hi(x∗)=0是显然的,因为根据约束条件本来就有hi(x)=0hi(x∗)=0,重点是原本的iαigi(x)0∑iαi∗gi(x∗)≤0现在取到了等号。

综合以上两点,在加上原来的约束,可以得到KKT条件:

L(x,α,β)x|x=0iαigi(x)=0αi0gi(x)0hi(x)=0{∂L(x,α∗,β∗)∂x|x∗=0∑iαi∗gi(x∗)=0αi∗≥0gi(x∗)≤0hi(x∗)=0

KKT条件是d=pd∗=p∗的必要条件,给出了当原问题和对偶问题等价时对应最优值点所满足的性质。

尽管KKT条件是d=pd∗=p∗的必要条件,但当原问题是凸优化问题时,它就升级为充要条件,也就是只要找到x,α,βx∗,α∗,β∗ 满足以上五个条件,那么原问题就和对偶问题就有相同的解,分别在xx∗(α,β)(α∗,β∗)处取得。

另外,根据KKT条件中的iαigi(x)=0∑iαi∗gi(x∗)=0可以得到,gi(x)<0αi=0gi(x∗)<0⇒αi∗=0,反过来说,只有gi(x)=0gi(x∗)=0αiαi∗才有可能不为0,这是SVM中用到的一个重要性质。

 

原创粉丝点击