jdk-AbstractQueuedSynchronizer(二)

来源:互联网 发布:京东756网络交易平台 编辑:程序博客网 时间:2024/05/16 16:22

上一篇分析只是基于AQS本身去分析了一下队列的逻辑,其实也只是分析了独占锁的模式,今天再来看看共享锁的模式是什么样的。

共享锁的话可以基于CountDownLatch去分析,CountDownLatch这个是个倒数计数器,其实是一个工具,可将一个任务分解到多线程中分别执行一段。我们就基于此分析一下共享锁。。

先上一段CountDownLatch 的例子。可以看见每个线程中都执行了begin.wait()方法,这个方法会在begin执行到0时才开始执行,类似中断当前线程的运行,等待一个状态。

end也是执行了一个wait(),在end到0时才会去执行。

/** * 同步计数器 * Created by Administrator on 17-5-2. */public class CountDownLatchTest {    public static final int TOTALNUM = 10;    public static void main(String[] args) throws InterruptedException{        /*开始倒计时 计数器*/        final CountDownLatch begin = new CountDownLatch(10);        /*结束倒计时 计数器*/        final CountDownLatch end = new CountDownLatch(TOTALNUM);        ExecutorService service = Executors.newFixedThreadPool(TOTALNUM);        for(int i = 0; i < TOTALNUM; i++){            final int num = i + 1;            Runnable run = new Runnable() {                @Override                public void run() {                    try{                        //所有线程等待开始计数器倒数至0                        begin.await();                        System.out.println("This is gunner: " + num);                    }catch (InterruptedException e){                        e.printStackTrace();                    }finally {                        //每次到达一个 -1                        end.countDown();                    }                }            };            service.submit(run);        }        for(int i = TOTALNUM; i > 0; i--){            begin.countDown();        }        end.await();        System.out.println("all people arrive: end");        service.shutdown();    }}
那么在CountDownLatch里,这个0其实就是一个状态。

首先看初始化方法,其实就是将一个数目存放进了state字段中,这个state在不同的场景中代表不同的含义,在CountDownLatch中代表计数器的大小。

public CountDownLatch(int count) {        if (count < 0) throw new IllegalArgumentException("count < 0");        this.sync = new Sync(count);    }
protected final void setState(int newState) {        state = newState;    }
初始化之后紧接着就是wait方法,看它做了什么?如果当前线程被打断了,直接抛出异常,不看。

看它接着在做什么,

public final void acquireSharedInterruptibly(int arg)            throws InterruptedException {        if (Thread.interrupted())            throw new InterruptedException();        if (tryAcquireShared(arg) < 0)            doAcquireSharedInterruptibly(arg);    }
tryAcquireShared是由子类实现的,去看CountDownLatch内的方法,超级easy,判断计数器的大小是多少~~~如果是0,则返回1,不是则是 -1。回头看上面的方法,一般情况下我们假设现在计数器还有,这个是一般情况,那么存在计数器大小不为0,也就对应开头所说,知道为0时才执行。。。
 protected int tryAcquireShared(int acquires) {            return (getState() == 0) ? 1 : -1;        }
小于0时,执行下面的逻辑。addWaiter方法跟昨天看的一致,轮询去建立一个head的空节点和子节点。并设置tail指向当前节点,注意这块,head处是一个空节点,真正村春当前线程的是后继节点,这一点要搞清楚,认真看下源码中的enq方法就能发现了。至于shouldParkAfterFailedAcquire和parkAndCheckInterrupt方法就不说了,跟之前一样,将当前节点的状态设置成SiNGAL,并阻塞当前节点,我们来看下不同点是对于前驱节点的处理。

首先获取当前节点的前驱节点,判断是不是head节点。如果是的话,再次尝试获取锁,此时如果计数器还没到0的话,就会返回-1,说明线程还不能执行,直接到后面逻辑,阻塞当前线程。如果当前线程执行时刚好计数器大小为0了,说明可以执行了。就会去执行setHeadAndPropagate方法,这个方法又在干什么?我们知道p.next和之前一样,其实就是将head处的空节点释放掉了。

    private void doAcquireSharedInterruptibly(int arg)        throws InterruptedException {        final Node node = addWaiter(Node.SHARED);        boolean failed = true;        try {            for (;;) {                final Node p = node.predecessor();                if (p == head) {                    int r = tryAcquireShared(arg);                    if (r >= 0) {                        setHeadAndPropagate(node, r);                        p.next = null; // help GC                        failed = false;                        return;                    }                }                if (shouldParkAfterFailedAcquire(p, node) &&                    parkAndCheckInterrupt())                    throw new InterruptedException();            }        } finally {            if (failed)                cancelAcquire(node);        }    }
看下这个方法 setHead,顾名思义了,将当前节点设置成头节点,并将其中的Thread 设置成null,并将当前节点指向的head处节点断掉。

 private void setHead(Node node) {        head = node;        node.thread = null;        node.prev = null;    }
因此就进入了release流程。进入release流程,是release谁呢?release的是下一个节点,这个就很有趣了,当前节点获取锁成功了,要唤醒下一个节点。实现了共享状态向后传递的效果。
private void setHeadAndPropagate(Node node, int propagate) {        Node h = head; // Record old head for check below        setHead(node);        /*         * Try to signal next queued node if:         *   Propagation was indicated by caller,         *     or was recorded (as h.waitStatus) by a previous operation         *     (note: this uses sign-check of waitStatus because         *      PROPAGATE status may transition to SIGNAL.)         * and         *   The next node is waiting in shared mode,         *     or we don't know, because it appears null         *         * The conservatism in both of these checks may cause         * unnecessary wake-ups, but only when there are multiple         * racing acquires/releases, so most need signals now or soon         * anyway.         */        if (propagate > 0 || h == null || h.waitStatus < 0) {            Node s = node.next;            if (s == null || s.isShared())                doReleaseShared();        }    }
看下release过程。如果当前线程的状态是SINGAL时,唤醒下一个节点。如果不是,状态为0时,设置为PROPAGATE,这个状态是个传播状态。如果当前操作过程中h被别的线程改过了,那么当前线程再次进入轮训。那么唤醒的下一个线程又从doAcquireSharedInterruptibly方法开始找寻前驱节点是不是head,进入再次唤醒下一个节点的流程。
    private void doReleaseShared() {        /*         * Ensure that a release propagates, even if there are other         * in-progress acquires/releases.  This proceeds in the usual         * way of trying to unparkSuccessor of head if it needs         * signal. But if it does not, status is set to PROPAGATE to         * ensure that upon release, propagation continues.         * Additionally, we must loop in case a new node is added         * while we are doing this. Also, unlike other uses of         * unparkSuccessor, we need to know if CAS to reset status         * fails, if so rechecking.         */        for (;;) {            Node h = head;            if (h != null && h != tail) {                int ws = h.waitStatus;                if (ws == Node.SIGNAL) {                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))                        continue;            // loop to recheck cases                    unparkSuccessor(h);                }                else if (ws == 0 &&                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))                    continue;                // loop on failed CAS            }            if (h == head)                   // loop if head changed                break;        }    }

示例如下: 对于例子中新起的10个线程,由于执行了,begin.wait()操作,那么在wait操作过程中,它们不断的轮训看能不能获取到锁,但是可惜的是state设置的大小是10,它们永远走不到return的那一步,所以最终它们都在doAcquireSharedInterruptibly方法中断了自己,并且最终状态都是-1,也就是等待某个条件唤醒自己。


以上就是中断逻辑,那么现在来看什么时候能唤醒呢?其实跟第一篇分析的有所不同,这边的唤醒条件就是计数器为0,也即是countDown执行为0时,很巧妙的一个实现啊。

可见每执行一次,都是减1啊,所以这叫做倒数计数器嘛。

 public void countDown() {        sync.releaseShared(1);    }
tryReleaseShared方法由子类实现。看见这个方法只要结果不是0,就一直是false,直至倒数计数器的值为0。
protected boolean tryReleaseShared(int releases) {            // Decrement count; signal when transition to zero            for (;;) {                int c = getState();                if (c == 0)                    return false;                int nextc = c-1;                if (compareAndSetState(c, nextc))                    return nextc == 0;            }        }
下一步就是去唤醒上面中断的线程。方法任然是doReleaseShared方法。那么现在线程会重新去获取锁了,此时的tryAccquireShared方法内state为0了,返回的是1,进入了setHead流程,再次循环了。

for (;;) {                final Node p = node.predecessor();                if (p == head) {                    int r = tryAcquireShared(arg);                    if (r >= 0) {                        setHeadAndPropagate(node, r);                        p.next = null; // help GC                        failed = false;                        return;                    }                }                if (shouldParkAfterFailedAcquire(p, node) &&                    parkAndCheckInterrupt())                    throw new InterruptedException();            }



原创粉丝点击