caffe中去掉均值文件的classification.cpp

来源:互联网 发布:舆情分析算法 编辑:程序博客网 时间:2024/06/02 06:18

  caffe中用自带的classification.exe对单张图片进行分类识别时,一定要用到均值文件,写bat文件时也要写均值文件的路径。由于目标识别领域中用caffe时一般都有这个减均值的过程,将减均值过后的图片输入到第一个卷基层里,可以提高识别率。但是有些特殊领域不需要减均值这一步骤,比如图像取证中对某些特殊篡改后的图片进行训练时,输入到第一个卷基层的特征不是减均值过后的,比如是减去中值滤波过后的特征图片(MFR),因此这些领域用这个caffe自带的classification.exe时,就需要去掉均值这一部分。

  以下是对原classification.cpp的修改(以修改后的cpp中行数为参考):

1、第25行,注释掉构造函数声明中给的均值文件部分;

2、第31行,注释掉私有成员函数SetMean;

3、第44行,注释掉均值图片cv::Mat mean_;

4、第50行,注释掉构造函数定义中给的均值文件部分;

5、第72行,注释掉成员函数SetMean的调用;

5、第120至148行中所有内容,即SetMean函数的定义;

6、第216行,注释掉减去均值后的图片cv::Mat sample_normalized的初始化;

7、第217行,注释掉调用opencv库中的subtract函数进行减均值的操作;

8、第230行,将“(argc != 6)”改成“(argc != 5)”;

9、第241行,注释掉均值文件的部分,并对之后的argv[]中的序号进行修改;


注:

1、第28行中的N值我这里给的是1,因为我是二分类,caffe中这里的N默认的是5,即输出概率值从高到低前5个可能的类型标签;

2、将修改后的代码添加到caffe.sln的classification的项目里,把原来的classification.cpp移除,重新编译(生成解决方案),编译成功后在caffe的Release下就能找到我们去均值过后的classification.exe。


下面是修改后的代码:

#include <caffe/caffe.hpp>#ifdef USE_OPENCV#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#endif  // USE_OPENCV#include <algorithm>#include <iosfwd>#include <memory>#include <string>#include <utility>#include <vector>#ifdef USE_OPENCVusing namespace caffe;  // NOLINT(build/namespaces)using std::string;/* Pair (label, confidence) representing a prediction. */typedef std::pair<string, float> Prediction;class Classifier { public:  Classifier(const string& model_file,             const string& trained_file,            // const string& mean_file,             const string& label_file);  std::vector<Prediction> Classify(const cv::Mat& img, int N = 1); private:  //void SetMean(const string& mean_file);  std::vector<float> Predict(const cv::Mat& img);  void WrapInputLayer(std::vector<cv::Mat>* input_channels);  void Preprocess(const cv::Mat& img,                  std::vector<cv::Mat>* input_channels); private:  shared_ptr<Net<float> > net_;  cv::Size input_geometry_;  int num_channels_;  //cv::Mat mean_;  std::vector<string> labels_;};Classifier::Classifier(const string& model_file,                       const string& trained_file,                       //const string& mean_file,                       const string& label_file) {#ifdef CPU_ONLY  Caffe::set_mode(Caffe::CPU);#else  Caffe::set_mode(Caffe::GPU);#endif  /* Load the network. */  net_.reset(new Net<float>(model_file, TEST));  net_->CopyTrainedLayersFrom(trained_file);  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";  Blob<float>* input_layer = net_->input_blobs()[0];  num_channels_ = input_layer->channels();  CHECK(num_channels_ == 3 || num_channels_ == 1)    << "Input layer should have 1 or 3 channels.";  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());  /* Load the binaryproto mean file. */  //SetMean(mean_file);  /* Load labels. */  std::ifstream labels(label_file.c_str());  CHECK(labels) << "Unable to open labels file " << label_file;  string line;  while (std::getline(labels, line))    labels_.push_back(string(line));  Blob<float>* output_layer = net_->output_blobs()[0];  CHECK_EQ(labels_.size(), output_layer->channels())    << "Number of labels is different from the output layer dimension.";}//至此Classifier类的构造函数的定义结束static bool PairCompare(const std::pair<float, int>& lhs,                        const std::pair<float, int>& rhs) {  return lhs.first > rhs.first;}/* Return the indices of the top N values of vector v. */static std::vector<int> Argmax(const std::vector<float>& v, int N) {  std::vector<std::pair<float, int> > pairs;  for (size_t i = 0; i < v.size(); ++i)    pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);  std::vector<int> result;  for (int i = 0; i < N; ++i)    result.push_back(pairs[i].second);  return result;}/* Return the top N predictions. */std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {  std::vector<float> output = Predict(img);  N = std::min<int>(labels_.size(), N);  std::vector<int> maxN = Argmax(output, N);  std::vector<Prediction> predictions;  for (int i = 0; i < N; ++i) {    int idx = maxN[i];    predictions.push_back(std::make_pair(labels_[idx], output[idx]));  }  return predictions;}/* Load the mean file in binaryproto format. *///void Classifier::SetMean(const string& mean_file) {  //BlobProto blob_proto; // ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);  /* Convert from BlobProto to Blob<float> *///  Blob<float> mean_blob; // mean_blob.FromProto(blob_proto); // CHECK_EQ(mean_blob.channels(), num_channels_)  //  << "Number of channels of mean file doesn't match input layer.";  /* The format of the mean file is planar 32-bit float BGR or grayscale. *///  std::vector<cv::Mat> channels; // float* data = mean_blob.mutable_cpu_data();  //for (int i = 0; i < num_channels_; ++i) {    /* Extract an individual channel. */    //cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);    //channels.push_back(channel);   // data += mean_blob.height() * mean_blob.width(); // }  /* Merge the separate channels into a single image. */  //cv::Mat mean;  //cv::merge(channels, mean);  /* Compute the global mean pixel value and create a mean image   * filled with this value. */  //cv::Scalar channel_mean = cv::mean(mean);  //mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);//}std::vector<float> Classifier::Predict(const cv::Mat& img) {  Blob<float>* input_layer = net_->input_blobs()[0];  input_layer->Reshape(1, num_channels_,                       input_geometry_.height, input_geometry_.width);  /* Forward dimension change to all layers. */  net_->Reshape();  std::vector<cv::Mat> input_channels;  WrapInputLayer(&input_channels);  Preprocess(img, &input_channels);  net_->Forward();  /* Copy the output layer to a std::vector */  Blob<float>* output_layer = net_->output_blobs()[0];  const float* begin = output_layer->cpu_data();  const float* end = begin + output_layer->channels();  return std::vector<float>(begin, end);}/* Wrap the input layer of the network in separate cv::Mat objects * (one per channel). This way we save one memcpy operation and we * don't need to rely on cudaMemcpy2D. The last preprocessing * operation will write the separate channels directly to the input * layer. */void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {  Blob<float>* input_layer = net_->input_blobs()[0];  int width = input_layer->width();  int height = input_layer->height();  float* input_data = input_layer->mutable_cpu_data();  for (int i = 0; i < input_layer->channels(); ++i) {    cv::Mat channel(height, width, CV_32FC1, input_data);    input_channels->push_back(channel);    input_data += width * height;  }}void Classifier::Preprocess(const cv::Mat& img,                            std::vector<cv::Mat>* input_channels) {  /* Convert the input image to the input image format of the network. */  cv::Mat sample;  if (img.channels() == 3 && num_channels_ == 1)    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);  else if (img.channels() == 4 && num_channels_ == 1)    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);  else if (img.channels() == 4 && num_channels_ == 3)    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);  else if (img.channels() == 1 && num_channels_ == 3)    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);  else    sample = img;  cv::Mat sample_resized;  if (sample.size() != input_geometry_)    cv::resize(sample, sample_resized, input_geometry_);  else    sample_resized = sample;  cv::Mat sample_float;  if (num_channels_ == 3)    sample_resized.convertTo(sample_float, CV_32FC3);  else    sample_resized.convertTo(sample_float, CV_32FC1);  //cv::Mat sample_normalized;  //cv::subtract(sample_float, mean_, sample_normalized);  /* This operation will write the separate BGR planes directly to the   * input layer of the network because it is wrapped by the cv::Mat   * objects in input_channels. */  cv::split(sample_float, *input_channels);  CHECK(reinterpret_cast<float*>(input_channels->at(0).data)        == net_->input_blobs()[0]->cpu_data())    << "Input channels are not wrapping the input layer of the network.";}int main(int argc, char** argv) {  if (argc != 5) {    std::cerr << "Usage: " << argv[0]              << " deploy.prototxt network.caffemodel"              << std::endl;    return 1;  }  ::google::InitGoogleLogging(argv[0]);  string model_file   = argv[1];  string trained_file = argv[2];  //string mean_file    = argv[3];  string label_file   = argv[3];  Classifier classifier(model_file, trained_file,  label_file);  string file = argv[4];  std::cout << "---------- Prediction for "            << file << " ----------" << std::endl;  cv::Mat img = cv::imread(file, -1);  CHECK(!img.empty()) << "Unable to decode image " << file;  std::vector<Prediction> predictions = classifier.Classify(img);  /* Print the top N predictions. */  for (size_t i = 0; i < predictions.size(); ++i) {    Prediction p = predictions[i];    std::cout << std::fixed << std::setprecision(4) << p.second << " - \""              << p.first << "\"" << std::endl;  }}#elseint main(int argc, char** argv) {  LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";}#endif  // USE_OPENCV


原创粉丝点击