Map分析

来源:互联网 发布:终极斗士 知乎 编辑:程序博客网 时间:2024/06/10 14:11

java.util.Map

1.Map接口和方法

1.1覆盖了equal()和hashCode()

|方法|说明|
|
|equal(Obejct o)|根据实际比较指定对象与Map的等价性|
|hashCode()|返回次Map的哈希表|

1.2Map的主要增减删除方法

|方法|说明|
|
|clear()|删除所有映射|
|remove(object)|删除指定的的key-value|
|put(Object key,Obejct value)|增加新的键值对|
|putAll(Map t)|把参数Map中的所有键值对全部复制到本Map|
|get(Object key)|返回指定key对应的value,如果没有加返回null|
|size)|返回键值对的个数|

1.3返回元素集合的方法

|方法|说明|
|
|entrySet()|返回此映射中包含的映射关系的 Set 视图|
|keySet()|返回此映射中包含的键的 Set 视图|
|values()|返回此映射中包含的值的 Collection 视图|

前面两个返回的是Set对象,第三个返回的是Collection对象,这里拿到的是基础Map的视图(在这里删除了Set中也没有了---测试不是这样的,看了源码再改)

1.4负载因子

如果(负载因子)x(容量)>(Map 大小),则调整 Map 大小

|负载因子大小|影响|
|
|大|对空间的利用更加充分,查找的效率会降低|
|小|散列表过于稀疏,对空间造成严重的浪费|

负载因子本身是空间和时间之间的调整折衷。较小的负载因子将占用更多的空间,但将降低冲突的可能性,从而将加快访问和更新的速度。使用大于 0.75 的负载因子可能是不明智的,而使用大于 1.0 的负载因子肯定是不明知的,这是因为这必定会引发一次冲突。使用小于 0.50 的负载因子好处并不大,但只要您有效地调整 Map 的大小,应不会对小负载因子造成性能开销,而只会造成内存开销。但较小的负载因子将意味着如果您未预先调整 Map 的大小,则导致更频繁的调整大小,从而降低性能,因此在调整负载因子时一定要注意这个问题。
  

2 Map

<!--lang: java-->public interface Map<K,V> {  //抽象方法  int size();  boolean isEmpty();  boolean containsKey(Object key);  boolean containsValue(Object value);  V get(Object key);  V put(K key, V value);  V remove(Object key);  void putAll(Map<? extends K, ? extends V> m); void clear(); Set<K> keySet(); Collection<V> values(); Set<Map.Entry<K, V>> entrySet(); boolean equals(Object o); int hashCode();//内部接口interface Entry<K,V> {    K getKey();     V getValue();    V setValue(V value);    boolean equals(Object o);    int hashCode();    ...}//包含key并且返回value不为null就返回value,否则返回默认值default V getOrDefault(Object key, V defaultValue) {    V v;    return (((v = get(key)) != null) || containsKey(key))        ? v        : defaultValue;}//如果不存在key-value就插入,负责返回已存在的key的value default V putIfAbsent(K key, V value) {    V v = get(key);    if (v == null) {        v = put(key, value);    }    return v;}//如果key对应的value存在并且等于传入的value就删除这对键值对//或者传入的key-value本身就不存在default boolean remove(Object key, Object value) {    Object curValue = get(key);    if (!Objects.equals(curValue, value) ||        (curValue == null && !containsKey(key))) {        return false;    }    remove(key);    return true;}//出入新的键值对,第二个参数保证key-oldValue存在default boolean replace(K key, V oldValue, V newValue) {    Object curValue = get(key);    if (!Objects.equals(curValue, oldValue) ||        (curValue == null && !containsKey(key))) {        return false;    }    put(key, newValue);    return true;}   //替换前面存在的key-value,返回前面的value值default V replace(K key, V value) {    V curValue;    if (((curValue = get(key)) != null) || containsKey(key)) {        curValue = put(key, value);    }    return curValue;}}

3.HashMap

public class HashMap<K,V> extends AbstractMap<K,V>    implements Map<K,V>, Cloneable, Serializable {    private static final long serialVersionUID = 362498820763181265L;    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;    static final int MAXIMUM_CAPACITY = 1 << 30;    static final float DEFAULT_LOAD_FACTOR = 0.75f; //load factor 负载因子    //Map.Entry------------------------    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        V value;        Node<K,V> next;        Node(int hash, K key, V value, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.value = value;            this.next = next;        }        public final K getKey()        { return key; }        public final V getValue()      { return value; }        public final String toString() { return key + "=" + value; }        public final int hashCode() {            return Objects.hashCode(key) ^ Objects.hashCode(value);        }        public final V setValue(V newValue) {            V oldValue = value;            value = newValue;            return oldValue;        }        public final boolean equals(Object o) {            if (o == this)                return true;            if (o instanceof Map.Entry) {                Map.Entry<?,?> e = (Map.Entry<?,?>)o;                if (Objects.equals(key, e.getKey()) &&                    Objects.equals(value, e.getValue()))                    return true;            }            return false;       }    }       //成员变量    transient Node<K,V>[] table;    transient Set<Map.Entry<K,V>> entrySet;    transient int size;    transient int modCount;    int threshold;    final float loadFactor;    //构造方法    public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted    }    public HashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);    }           public HashMap(int initialCapacity, float loadFactor) {        //参数判断,抛异常        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +                                               initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +                                               loadFactor);        this.loadFactor = loadFactor;        //函数调用见下面        this.threshold = tableSizeFor(initialCapacity);    }    static final int tableSizeFor(int cap) {       int n = cap - 1;       n |= n >>> 1;       n |= n >>> 2;       n |= n >>> 4;       n |= n >>> 8;       n |= n >>> 16;       return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}public HashMap(Map<? extends K, ? extends V> m) {    this.loadFactor = DEFAULT_LOAD_FACTOR;    putMapEntries(m, false);}//方法public int size() {    return size;}public boolean isEmpty() {    return size == 0;}//--------------getpublic V get(Object key) {    Node<K,V> e;    //调用了 hash() getNode()    return (e = getNode(hash(key), key)) == null ? null : e.value;}static final int hash(Object key) {    int h;      //h如果大于65535则产一个新的值,否则全部就是key.hashCode();    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}//参数1是hash(key),2是keyfinal Node<K,V> getNode(int hash, Object key) {    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;    if ((tab = table) != null && (n = tab.length) > 0 &&        (first = tab[(n - 1) & hash]) != null) { //first的得出因为在put时就采用了这样算法        if (first.hash == hash && // always check first node            ((k = first.key) == key || (key != null && key.equals(k)))) //如果链表第一个就是要求的,直接返回            return first;        if ((e = first.next) != null) {            if (first instanceof TreeNode)                return ((TreeNode<K,V>)first).getTreeNode(hash, key);            do {                if (e.hash == hash &&                    ((k = e.key) == key || (key != null && key.equals(k))))                    return e;            } while ((e = e.next) != null); //循环遍历链表        }    }    return null;}//因为在上面的getNode()函数中,当包含这个key-value是返回Node否则返回nullpublic boolean containsKey(Object key) {    return getNode(hash(key), key) != null;}//---------------putpublic V put(K key, V value) {    return putVal(hash(key), key, value, false, true);}/** * Implements Map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */final V putVal(int hash, K key, V value, boolean onlyIfAbsent,               boolean evict) {    Node<K,V>[] tab; Node<K,V> p; int n, i;    //第一次进入这里进行resize();    if ((tab = table) == null || (n = tab.length) == 0)        n = (tab = resize()).length;    //tab[i = (n - 1) & hash]存在数组这个位置上面去    if ((p = tab[i = (n - 1) & hash]) == null)//上面没有数据,直接加到链表第一个        tab[i] = newNode(hash, key, value, null);    else {//往链表后面追加        Node<K,V> e; K k;        if (p.hash == hash &&            ((k = p.key) == key || (key != null && key.equals(k))))//第一个位置key-value本身存在            e = p;        else if (p instanceof TreeNode)            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);        else {            for (int binCount = 0; ; ++binCount) {                if ((e = p.next) == null) {                    p.next = newNode(hash, key, value, null);//插入链表尾部                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                        treeifyBin(tab, hash);                    break;                }                if (e.hash == hash &&                    ((k = e.key) == key || (key != null && key.equals(k))))//后面位置key-value本身存在                    break;                p = e;            }        }        if (e != null) { // existing mapping for key            V oldValue = e.value;            if (!onlyIfAbsent || oldValue == null)                e.value = value;            afterNodeAccess(e);//do nothing            return oldValue;        }    }    ++modCount; //仅仅在修改了已存在的key-value才会执行到这一步    if (++size > threshold)        resize();    afterNodeInsertion(evict);//do nothing    return null;}Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {    return new Node<>(hash, key, value, next);}//------------removepublic V remove(Object key) {    Node<K,V> e;    return (e = removeNode(hash(key), key, null, false, true)) == null ?        null : e.value;} final Node<K,V> removeNode(int hash, Object key, Object value,                           boolean matchValue, boolean movable) {    Node<K,V>[] tab; Node<K,V> p; int n, index;    if ((tab = table) != null && (n = tab.length) > 0 &&        (p = tab[index = (n - 1) & hash]) != null) { //找到数组的下标        Node<K,V> node = null, e; K k; V v;        if (p.hash == hash &&               ((k = p.key) == key || (key != null && key.equals(k))))  //首结点就是            node = p;        else if ((e = p.next) != null) {  //循环链表查找要删除的key-value            if (p instanceof TreeNode)                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);            else {                do {                    if (e.hash == hash &&                        ((k = e.key) == key ||                         (key != null && key.equals(k)))) {                        node = e;                        break;                    }                    p = e;                } while ((e = e.next) != null);            }        }        if (node != null && (!matchValue || (v = node.value) == value ||                             (value != null && value.equals(v)))) { //找到node并检车value就会最终返回一个node            if (node instanceof TreeNode)                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);            else if (node == p)//如何使首结点,直接指向下一个就好了                tab[index] = node.next;            else  //中间节点                p.next = node.next;            ++modCount;            --size;            afterNodeRemoval(node);            return node;        }    }    return null;}//清空public void clear() {    Node<K,V>[] tab;    modCount++;    if ((tab = table) != null && size > 0) {        size = 0;        for (int i = 0; i < tab.length; ++i)            tab[i] = null; //付个空指针就好了    }}public boolean containsValue(Object value) {    Node<K,V>[] tab; V v;    if ((tab = table) != null && size > 0) {        for (int i = 0; i < tab.length; ++i) {  //遍历数组            for (Node<K,V> e = tab[i]; e != null; e = e.next) { //遍历链表                if ((v = e.value) == value ||                    (value != null && value.equals(v)))                    return true;            }        }    }    return false;}//set ----------- collectionspublic Set<K> keySet() {    Set<K> ks = keySet;    if (ks == null) {        ks = new KeySet();        keySet = ks;    }    return ks;} public Collection<V> values() {    Collection<V> vs = values;    if (vs == null) {        vs = new Values();        values = vs;    }    return vs;}public Set<Map.Entry<K,V>> entrySet() {    Set<Map.Entry<K,V>> es;    return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;}//这个内部类中的成员基本上全部是外部类的final class KeySet extends AbstractSet<K> {    public final int size()                 { return size; }    public final void clear()               { HashMap.this.clear(); //调用这个clear就相当于这届调用HashMap.clear();}    public final Iterator<K> iterator()     { return new KeyIterator(); }    public final boolean contains(Object o) { return containsKey(o); }    public final boolean remove(Object key) {        return removeNode(hash(key), key, null, false, true) != null;    }    public final Spliterator<K> spliterator() {        return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);    }    public final void forEach(Consumer<? super K> action) {        Node<K,V>[] tab;        if (action == null)            throw new NullPointerException();        if (size > 0 && (tab = table) != null) {            int mc = modCount;            for (int i = 0; i < tab.length; ++i) {                for (Node<K,V> e = tab[i]; e != null; e = e.next)                    action.accept(e.key);            }            if (modCount != mc)                throw new ConcurrentModificationException();        }    }}/* ------------------------------------------------------------ */// iteratorsabstract class HashIterator {    Node<K,V> next;        // next entry to return    Node<K,V> current;     // current entry    int expectedModCount;  // for fast-fail    int index;             // current slot    HashIterator() {        expectedModCount = modCount;        Node<K,V>[] t = table;        current = next = null;        index = 0;        if (t != null && size > 0) { // advance to first entry            do {} while (index < t.length && (next = t[index++]) == null); //next指向第一个非Null的        }    }    public final boolean hasNext() {  //下一个元素是否存在        return next != null;    }    final Node<K,V> nextNode() {        Node<K,V>[] t;        Node<K,V> e = next;        if (modCount != expectedModCount)            throw new ConcurrentModificationException();        if (e == null)  //没有了            throw new NoSuchElementException();        if ((next = (current = e).next) == null && (t = table) != null) { //下一个为null是一直循环直到找到不为Null的下次备用            do {} while (index < t.length && (next = t[index++]) == null);        }        return e;    }    public final void remove() {        Node<K,V> p = current;        if (p == null)            throw new IllegalStateException();        if (modCount != expectedModCount)            throw new ConcurrentModificationException();        current = null;        K key = p.key;        removeNode(hash(key), key, null, false, false);        expectedModCount = modCount;    }}//下面3个都是调用了nextNode()final class KeyIterator extends HashIterator    implements Iterator<K> {    public final K next() { return nextNode().key; }}final class ValueIterator extends HashIterator    implements Iterator<V> {    public final V next() { return nextNode().value; }}final class EntryIterator extends HashIterator    implements Iterator<Map.Entry<K,V>> {    public final Map.Entry<K,V> next() { return nextNode(); }}}
原创粉丝点击