linux 线程池服务器代码

来源:互联网 发布:中国m2月度数据 编辑:程序博客网 时间:2024/06/05 22:41

运行结果如下:

运行server


浏览器连接:


server输出


源代码如下:

/* Linux 2.6 x86_64 only*/#include  #include  #include  #include  #include  #include  #include  #include  #include #include   #define THREAD_MAX 20 #define LISTEN_MAX 20 #define SERVER_IP "127.0.0.1"  typedef struct {    char ip4[128];     int port;     int fd; } LISTEN_INFO;  //服务器参数 static LISTEN_INFO s_listens[LISTEN_MAX];  //线程池参数 static unsigned int s_thread_para[THREAD_MAX][8];//线程参数 static pthread_t s_tid[THREAD_MAX];//线程ID pthread_mutex_t s_mutex[THREAD_MAX];//线程锁  //私有函数 static int init_thread_pool(void);//初始化数据static int init_listen4(char *ip4, int port, int max_link); //初始化监听 //线程函数 void * test_server4(unsigned int thread_para[]); //设置文件描述符为NonBlockbool setNonBlock(int fd){    int flags = fcntl(fd, F_GETFL, 0);    flags |= O_NONBLOCK;    if(-1 == fcntl(fd, F_SETFL, flags))        return false;    return true;}  int main(int argc, char *argv[])//客户端驱动 {     //临时变量     int i, j, rc;      int sock_listen; //监听套接字     int sock_cli; //客户端连接     int listen_index;      int epfd;     int nfds;     struct epoll_event ev;     struct epoll_event events[LISTEN_MAX];          socklen_t addrlen; //地址信息长度     struct sockaddr_in addr4; //IPv4地址结构      //线程池初始化     rc = init_thread_pool();     if (0 != rc) exit(-1);      //初始化服务监听     for(i = 0; i < LISTEN_MAX; i++) {         sprintf(s_listens[i].ip4, "%s", SERVER_IP);         s_listens[i].port = 40000 + i;         //创建监听         rc = init_listen4(s_listens[i].ip4, s_listens[i].port, 64);         if (0 > rc) {             fprintf(stderr, "无法创建服务器监听于%s:%d\r\n", s_listens[i].ip4, s_listens[i].port);             exit(-1);         } else {            fprintf(stdout, "已创建服务器监听于%s:%d\r\n", s_listens[i].ip4, s_listens[i].port);          }         s_listens[i].fd = rc;     }           //设置集合     epfd = epoll_create(8192);     for (i = 0; i < LISTEN_MAX; i++) {         //加入epoll事件集合         ev.events = EPOLLIN | EPOLLET;        ev.data.u32 = i;//记录listen数组下标         if (epoll_ctl(epfd, EPOLL_CTL_ADD, s_listens[i].fd, &ev) < 0) {             fprintf(stderr, "向epoll集合添加套接字失败(fd =%d)\r\n", rc);             exit(-1);         }     }           //服务循环     for( ; ; ) {         //等待epoll事件         nfds = epoll_wait(epfd, events, LISTEN_MAX, -1);         //处理epoll事件         for(i = 0; i < nfds; i++) {             //接收客户端连接             listen_index = events[i].data.u32;             sock_listen = s_listens[listen_index].fd;             addrlen = sizeof(struct sockaddr_in);             bzero(&addr4, addrlen);                           sock_cli = accept(sock_listen, (struct sockaddr *)&addr4, &addrlen);             if(0 > sock_cli) {                 fprintf(stderr, "接收客户端连接失败\n");                 continue;             } else {                char *myIP = inet_ntoa(addr4.sin_addr);                printf("accept a connection from %s...\n", myIP);             }                           setNonBlock(sock_cli);            //查询空闲线程对             for(j = 0; j < THREAD_MAX; j++) {                 if (0 == s_thread_para[j][0]) break;             }             if (j >= THREAD_MAX) {                 fprintf(stderr, "线程池已满, 连接将被放弃\r\n");                 shutdown(sock_cli, SHUT_RDWR);                 close(sock_cli);                 continue;             }             //复制有关参数             s_thread_para[j][0] = 1;//设置活动标志为"活动"             s_thread_para[j][1] = sock_cli;//客户端连接             s_thread_para[j][2] = listen_index;//服务索引             //线程解锁             pthread_mutex_unlock(s_mutex + j);         }//end of for(i;;)     }//end of for(;;)      exit(0); }  static int init_thread_pool(void) {     int i, rc;      //初始化线程池参数     for(i = 0; i < THREAD_MAX; i++) {         s_thread_para[i][0] = 0;//设置线程占用标志为"空闲"         s_thread_para[i][7] = i;//线程池索引         pthread_mutex_lock(s_mutex + i);// 这个地方为什么要加锁?不加锁创建监听有时会不成功     }      //创建线程池     for(i = 0; i < THREAD_MAX; i++) {         rc = pthread_create(s_tid + i, 0, (void* (*)(void *))test_server4, (void *)(s_thread_para[i]));         if (0 != rc) {             fprintf(stderr, "线程创建失败\n");             return(-1);         }     }      //成功返回     return(0); }  static int init_listen4(char *ip4, int port, int max_link) {     //临时变量     int sock_listen4;     struct sockaddr_in addr4;     unsigned int optval;     struct linger optval1;      //初始化数据结构     bzero(&addr4, sizeof(addr4));     //inet_pton将点分十进制IP转换为整数    inet_pton(AF_INET, ip4, &(addr4.sin_addr));     addr4.sin_family = AF_INET;     //htons将无符号short从主机字节序(x86:Big-Endian)转换为网络字节序    addr4.sin_port = htons(port);           //创建流类型的SOCKET     sock_listen4 = socket(AF_INET, SOCK_STREAM, 0);     if (0 > sock_listen4) {        fprintf(stderr, "创建socket异常, sock_listen4:%d\n", sock_listen4);        perror("创建socket异常");        return(-1);     }          //设置SO_REUSEADDR选项(服务器快速重起)     optval = 0x1;     setsockopt(sock_listen4, SOL_SOCKET, SO_REUSEADDR, &optval, 4);      //设置SO_LINGER选项(防范CLOSE_WAIT挂住所有套接字)     optval1.l_onoff = 1;     optval1.l_linger = 60;     setsockopt(sock_listen4, SOL_SOCKET, SO_LINGER, &optval1, sizeof(struct linger));      if (0 > bind(sock_listen4, (struct sockaddr *)&addr4, sizeof(addr4))) {         fprintf(stderr, "bind socket异常, sock_listen4:%d\n", sock_listen4);        perror("bind socket异常");        close(sock_listen4);        return(-1);     }      if (0 > listen(sock_listen4, max_link)) {         fprintf(stderr, "listen socket异常, sock_listen4:%d\n", sock_listen4);        perror("listen socket异常");        close(sock_listen4);         return(-1);     }      return (sock_listen4); }  void * test_server4(unsigned int thread_para[]) {     //临时变量     int sock_cli; //客户端连接     int pool_index; //线程池索引     int listen_index; //监听索引      char buff[32768]; //传输缓冲区     int i, j, len;     char *p;      //线程脱离创建者     pthread_detach(pthread_self());     pool_index = thread_para[7];  wait_unlock:     pthread_mutex_lock(s_mutex + pool_index);//等待线程解锁      //线程变量内容复制     sock_cli = thread_para[1];//客户端连接     listen_index = thread_para[2];//监听索引      //接收请求     len = recv(sock_cli, buff, sizeof(buff), MSG_NOSIGNAL);     printf("%s\n", buff);          //构造响应     p = buff;     //HTTP头     p += sprintf(p, "HTTP/1.1 200 OK\r\n");     p += sprintf(p, "Content-Type: text/html\r\n");     p += sprintf(p, "Connection: closed\r\n\r\n");     //页面     p += sprintf(p, "\r\n\r\n");     p += sprintf(p, "\r\n");     p += sprintf(p, "\r\n");     p += sprintf(p, "\r\n");      p += sprintf(p, "
\r\n"); p += sprintf(p, "

连接状态

\r\n"); p += sprintf(p, "

服务器地址 %s:%d

\r\n", s_listens[listen_index].ip4, s_listens[listen_index].port); j = 0; for(i = 0; i < THREAD_MAX; i++) { if (0 != s_thread_para[i][0]) j++; } p += sprintf(p, "

线程池状态

\r\n"); p += sprintf(p, "

线程池总数 %d 活动线程总数 %d

\r\n", THREAD_MAX, j); p += sprintf(p, "
\r\n"); len = p - buff; //发送响应 send(sock_cli, buff, len, MSG_NOSIGNAL); memset(buff, 0, 32768); //释放连接 shutdown(sock_cli, SHUT_RDWR); close(sock_cli); //线程任务结束 thread_para[0] = 0;//设置线程占用标志为"空闲" goto wait_unlock; pthread_exit(NULL); }