caffe中mnist中 lenet_train_test.prototxt和lenet.prototxt(deploy文件)区别

来源:互联网 发布:牛客网大数据面试 编辑:程序博客网 时间:2024/06/11 11:23

参照 http://blog.csdn.net/cham_3/article/details/52682479

http://blog.csdn.net/l18930738887/article/details/54898016

跑了下mnist训练,和使用训练好的模型进行预测

两个文件都在examples/mnist 中, lenet_train_test.prototxt 文件是设置train、test的网络,deploy文件是分类测试加载的文件。

大体区别思路是网络配置文件会规定的详细一些,deploy文件只是告诉分类程序(mnist_classification.bin)网络结构是怎么样的,不需要反向计算,不需要计算误差


两个文件内容先发出来:

cat lenet_train_test.prototxt 

name: "LeNet"layer {  name: "mnist"  type: "Data"  top: "data"  top: "label"  include {    phase: TRAIN  }  transform_param {    scale: 0.00390625  }  data_param {    source: "examples/mnist/mnist_train_lmdb"    batch_size: 64    backend: LMDB  }}layer {  name: "mnist"  type: "Data"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    scale: 0.00390625  }  data_param {    source: "examples/mnist/mnist_test_lmdb"    batch_size: 100    backend: LMDB  }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  convolution_param {    num_output: 20    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "conv2"  type: "Convolution"  bottom: "pool1"  top: "conv2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  convolution_param {    num_output: 50    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "ip1"  type: "InnerProduct"  bottom: "pool2"  top: "ip1"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 500    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "relu1"  type: "ReLU"  bottom: "ip1"  top: "ip1"}layer {  name: "ip2"  type: "InnerProduct"  bottom: "ip1"  top: "ip2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 10    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "accuracy"  type: "Accuracy"  bottom: "ip2"  bottom: "label"  top: "accuracy"  include {    phase: TEST  }}layer {  name: "loss"  type: "SoftmaxWithLoss"  bottom: "ip2"  bottom: "label"  top: "loss"}



cat lenet.prototxt   

name: "LeNet"layer {  name: "data"  type: "Input"  top: "data"  input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }}layer {  name: "conv1"  type: "Convolution"  bottom: "data"  top: "conv1"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  convolution_param {    num_output: 20    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "pool1"  type: "Pooling"  bottom: "conv1"  top: "pool1"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "conv2"  type: "Convolution"  bottom: "pool1"  top: "conv2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  convolution_param {    num_output: 50    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "pool2"  type: "Pooling"  bottom: "conv2"  top: "pool2"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "ip1"  type: "InnerProduct"  bottom: "pool2"  top: "ip1"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 500    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "relu1"  type: "ReLU"  bottom: "ip1"  top: "ip1"}layer {  name: "ip2"  type: "InnerProduct"  bottom: "ip1"  top: "ip2"  param {    lr_mult: 1  }  param {    lr_mult: 2  }  inner_product_param {    num_output: 10    weight_filler {      type: "xavier"    }    bias_filler {      type: "constant"    }  }}layer {  name: "prob"  type: "Softmax"  bottom: "ip2"  top: "prob"}



区别:

1.首先删除TEST使用的部分,例如开始的输入数据test部分,

layer {  name: "mnist"  type: "Data"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    scale: 0.00390625  }  data_param {    source: "examples/mnist/mnist_test_lmdb"                                                       batch_size: 100                                                                                backend: LMDB                                                                                }                                                                                            }


最后的test精度部分

layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}


2. trian部分的输入数据部分修改,只需要告诉输入维度

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

改为

layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
}

shape: { dim: 64 dim: 1 dim: 28 dim: 28 }中第一个dim代表?,第二个dim代表channel个数1个(对于图片是RGB的,3通道就是3),第三第四个分别是width和height图片的。 


3. 原来的最后一层loss层改为pro层

layer {name: "loss"type: "SoftmaxWithLoss"bottom: "fc8"bottom: "label"top: "loss"}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

A:将其中的SoftmaxWithLoss替换为Softmax 
B:删除其中的bottom:”label”行,因为测试时需要预测label而不是给你一个已知label。 
C:同时将最后一层loss层改为pro层 
因此改完之后最后一层就是这样的:

layer {  name: "prob"  type: "Softmax"  bottom: "fc8"  top: "prob"}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

这里的name: “prob”就是你在预测时读取的layer的name,一定要对应上


阅读全文
0 0