interactions_anova

来源:互联网 发布:nba总决赛个人数据统计 编辑:程序博客网 时间:2024/05/17 02:26
# Interactions and ANOVANote: This script is based heavily on Jonathan Taylor’s class notes http://www.stanford.edu/class/stats191/interactions.htmlDownload and format data:
%matplotlib inlinefrom __future__ import print_functionfrom statsmodels.compat import urlopenimport numpy as npnp.set_printoptions(precision=4, suppress=True)import statsmodels.api as smimport pandas as pdpd.set_option("display.width", 100)import matplotlib.pyplot as pltfrom statsmodels.formula.api import olsfrom statsmodels.graphics.api import interaction_plot, abline_plotfrom statsmodels.stats.anova import anova_lmtry:    salary_table = pd.read_csv('salary.table')except:  # recent pandas can read URL without urlopen    url = 'http://stats191.stanford.edu/data/salary.table'    fh = urlopen(url)    salary_table = pd.read_table(fh)    salary_table.to_csv('salary.table')E = salary_table.EM = salary_table.MX = salary_table.XS = salary_table.S
Take a look at the data:
plt.figure(figsize=(6,6))symbols = ['D', '^']colors = ['r', 'g', 'blue']factor_groups = salary_table.groupby(['E','M'])for values, group in factor_groups:    i,j = values    plt.scatter(group['X'], group['S'], marker=symbols[j], color=colors[i-1],               s=144)plt.xlabel('Experience');plt.ylabel('Salary');

这里写图片描述

Fit a linear model:

formula = 'S ~ C(E) + C(M) + X'lm = ols(formula, salary_table).fit()print(lm.summary())
                            OLS Regression Results                            ==============================================================================

Dep. Variable: S R-squared: 0.957
Model: OLS Adj. R-squared: 0.953
Method: Least Squares F-statistic: 226.8
Date: Sun, 18 Jun 2017 Prob (F-statistic): 2.23e-27
Time: 19:57:43 Log-Likelihood: -381.63
No. Observations: 46 AIC: 773.3
Df Residuals: 41 BIC: 782.4
Df Model: 4
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
——————————————————————————
Intercept 8035.5976 386.689 20.781 0.000 7254.663 8816.532

C(E)[T.2]   3144.0352    361.968      8.686      0.000    2413.025    3875.045C(E)[T.3]   2996.2103    411.753      7.277      0.000    2164.659    3827.762C(M)[T.1]   6883.5310    313.919     21.928      0.000    6249.559    7517.503X            546.1840     30.519     17.896      0.000     484.549     607.819==============================================================================Omnibus:                        2.293   Durbin-Watson:                   2.237Prob(Omnibus):                  0.318   Jarque-Bera (JB):                1.362Skew:                          -0.077   Prob(JB):                        0.506Kurtosis:                       2.171   Cond. No.                         33.5==============================================================================Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Have a look at the created design matrix:

lm.model.exog[:5]
    array([[ 1.,  0.,  0.,  1.,  1.],           [ 1.,  0.,  1.,  0.,  1.],           [ 1.,  0.,  1.,  1.,  1.],           [ 1.,  1.,  0.,  0.,  1.],           [ 1.,  0.,  1.,  0.,  1.]])

Or since we initially passed in a DataFrame, we have a DataFrame available in

lm.model.data.orig_exog[:5]
Intercept C(E)[T.2] C(E)[T.3] C(M)[T.1] X 0 1.0 0.0 0.0 1.0 1.0 1 1.0 0.0 1.0 0.0 1.0 2 1.0 0.0 1.0 1.0 1.0 3 1.0 1.0 0.0 0.0 1.0 4 1.0 0.0 1.0 0.0 1.0

We keep a reference to the original untouched data in

lm.model.data.frame[:5]
S X E M 0 13876 1 1 1 1 11608 1 3 0 2 18701 1 3 1 3 11283 1 2 0 4 11767 1 3 0

Influence statistics

infl = lm.get_influence()print(infl.summary_table())
==================================================================================================           obs      endog     fitted     Cook's   student.   hat diag    dffits   ext.stud.     dffits                           value          d   residual              internal   residual           --------------------------------------------------------------------------------------------------         0  13876.000  15465.313      0.104     -1.683      0.155     -0.722     -1.723     -0.739         1  11608.000  11577.992      0.000      0.031      0.130      0.012      0.031      0.012         2  18701.000  18461.523      0.001      0.247      0.109      0.086      0.244      0.085         3  11283.000  11725.817      0.005     -0.458      0.113     -0.163     -0.453     -0.162         4  11767.000  11577.992      0.001      0.197      0.130      0.076      0.195      0.075         5  20872.000  19155.532      0.092      1.787      0.126      0.678      1.838      0.698         6  11772.000  12272.001      0.006     -0.513      0.101     -0.172     -0.509     -0.170         7  10535.000   9127.966      0.056      1.457      0.116      0.529      1.478      0.537         8  12195.000  12124.176      0.000      0.074      0.123      0.028      0.073      0.027         9  12313.000  12818.185      0.005     -0.516      0.091     -0.163     -0.511     -0.161        10  14975.000  16557.681      0.084     -1.655      0.134     -0.650     -1.692     -0.664        11  21371.000  19701.716      0.078      1.728      0.116      0.624      1.772      0.640        12  19800.000  19553.891      0.001      0.252      0.096      0.082      0.249      0.081        13  11417.000  10220.334      0.033      1.227      0.098      0.405      1.234      0.408        14  20263.000  20100.075      0.001      0.166      0.093      0.053      0.165      0.053        15  13231.000  13216.544      0.000      0.015      0.114      0.005      0.015      0.005        16  12884.000  13364.369      0.004     -0.488      0.082     -0.146     -0.483     -0.145        17  13245.000  13910.553      0.007     -0.674      0.075     -0.192     -0.669     -0.191        18  13677.000  13762.728      0.000     -0.089      0.113     -0.032     -0.087     -0.031        19  15965.000  17650.049      0.082     -1.747      0.119     -0.642     -1.794     -0.659        20  12336.000  11312.702      0.021      1.043      0.087      0.323      1.044      0.323        21  21352.000  21192.443      0.001      0.163      0.091      0.052      0.161      0.051        22  13839.000  14456.737      0.006     -0.624      0.070     -0.171     -0.619     -0.170        23  22884.000  21340.268      0.052      1.579      0.095      0.511      1.610      0.521        24  16978.000  18742.417      0.083     -1.822      0.111     -0.644     -1.877     -0.664        25  14803.000  15549.105      0.008     -0.751      0.065     -0.199     -0.747     -0.198        26  17404.000  19288.601      0.093     -1.944      0.110     -0.684     -2.016     -0.709        27  22184.000  22284.811      0.000     -0.103      0.096     -0.034     -0.102     -0.033        28  13548.000  12405.070      0.025      1.162      0.083      0.350      1.167      0.352        29  14467.000  13497.438      0.018      0.987      0.086      0.304      0.987      0.304        30  15942.000  16641.473      0.007     -0.705      0.068     -0.190     -0.701     -0.189        31  23174.000  23377.179      0.001     -0.209      0.108     -0.073     -0.207     -0.072        32  23780.000  23525.004      0.001      0.260      0.092      0.083      0.257      0.082        33  25410.000  24071.188      0.040      1.370      0.096      0.446      1.386      0.451        34  14861.000  14043.622      0.014      0.834      0.091      0.263      0.831      0.262        35  16882.000  17733.841      0.012     -0.863      0.077     -0.249     -0.860     -0.249        36  24170.000  24469.547      0.003     -0.312      0.127     -0.119     -0.309     -0.118        37  15990.000  15135.990      0.018      0.878      0.104      0.300      0.876      0.299        38  26330.000  25163.556      0.035      1.202      0.109      0.420      1.209      0.422        39  17949.000  18826.209      0.017     -0.897      0.093     -0.288     -0.895     -0.287        40  25685.000  26108.099      0.008     -0.452      0.169     -0.204     -0.447     -0.202        41  27837.000  26802.108      0.039      1.087      0.141      0.440      1.089      0.441        42  18838.000  19918.577      0.033     -1.119      0.117     -0.407     -1.123     -0.408        43  17483.000  16774.542      0.018      0.743      0.138      0.297      0.739      0.295        44  19207.000  20464.761      0.052     -1.313      0.131     -0.511     -1.325     -0.515        45  19346.000  18959.278      0.009      0.423      0.208      0.216      0.419      0.214==================================================================================================

or get a dataframe

df_infl = infl.summary_frame()
df_infl[:5]
dfb_Intercept dfb_C(E)[T.2] dfb_C(E)[T.3] dfb_C(M)[T.1] dfb_X cooks_d dffits dffits_internal hat_diag standard_resid student_resid 0 -0.505123 0.376134 0.483977 -0.369677 0.399111 0.104186 -0.738880 -0.721753 0.155327 -1.683099 -1.723037 1 0.004663 0.000145 0.006733 -0.006220 -0.004449 0.000029 0.011972 0.012120 0.130266 0.031318 0.030934 2 0.013627 0.000367 0.036876 0.030514 -0.034970 0.001492 0.085380 0.086377 0.109021 0.246931 0.244082 3 -0.083152 -0.074411 0.009704 0.053783 0.105122 0.005338 -0.161773 -0.163364 0.113030 -0.457630 -0.453173 4 0.029382 0.000917 0.042425 -0.039198 -0.028036 0.001166 0.075439 0.076340 0.130266 0.197257 0.194929

Now plot the reiduals within the groups separately:

resid = lm.residplt.figure(figsize=(6,6));for values, group in factor_groups:    i,j = values    group_num = i*2 + j - 1  # for plotting purposes    x = [group_num] * len(group)    plt.scatter(x, resid[group.index], marker=symbols[j], color=colors[i-1],            s=144, edgecolors='black')plt.xlabel('Group');plt.ylabel('Residuals');
Now we will test some interactions using anova or f_test
interX_lm = ols("S ~ C(E) * X + C(M)", salary_table).fit()print(interX_lm.summary())
                            OLS Regression Results                            ==============================================================================    Dep. Variable:                      S       R-squared:                       0.961    Adj. R-squared:                  0.955Method:                 Least Squares  F-statistic:                     158.6Prob (F-statistic):           8.23e-26Time:                        19:59:46   Log-Likelihood:                -379.47AIC:                             772.9Df Residuals:                      39       BIC:                             785.7Df Model:                           6                                         Covariance Type:            nonrobust                                         ===============================================================================                  coef    std err          t      P>|t|      [0.025      0.975]-------------------------------------------------------------------------------Intercept    7256.2800    549.494     13.205      0.000    6144.824    8367.736C(E)[T.2]    4172.5045    674.966      6.182      0.000    2807.256    5537.753C(E)[T.3]    3946.3649    686.693      5.747      0.000    2557.396    5335.333C(M)[T.1]    7102.4539    333.442     21.300      0.000    6428.005    7776.903X             632.2878     53.185     11.888      0.000     524.710     739.865C(E)[T.2]:X  -125.5147     69.863     -1.797      0.080    -266.826      15.796C(E)[T.3]:X  -141.2741     89.281     -1.582      0.122    -321.861      39.313==============================================================================Omnibus:                        0.432   Durbin-Watson:                   2.179Prob(Omnibus):                  0.806   Jarque-Bera (JB):                0.590Skew:                           0.144   Prob(JB):                        0.744Kurtosis:                       2.526   Cond. No.                         69.7==============================================================================Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Do an ANOVA check

from statsmodels.stats.api import anova_lmtable1 = anova_lm(lm, interX_lm)print(table1)interM_lm = ols("S ~ X + C(E)*C(M)", data=salary_table).fit()print(interM_lm.summary())table2 = anova_lm(lm, interM_lm)print(table2)
df_resid   ssr  df_diff     ss_diff         F    Pr(>F)0      41.0  4.328072e+07      0.0           NaN       NaN       NaN1      39.0  3.941068e+07      2.0  3.870040e+06  1.914856  0.160964                            OLS Regression Results                            ==============================================================================Dep. Variable:                      S   R-squared:                       0.999Model:                            OLS   Adj. R-squared:                  0.999Method:                 Least Squares   F-statistic:                     5517.Date:                Sun, 18 Jun 2017   Prob (F-statistic):           1.67e-55Time:                        20:00:10   Log-Likelihood:                -298.74No. Observations:                  46   AIC:                             611.5Df Residuals:                      39   BIC:                             624.3Df Model:                           6                                         Covariance Type:            nonrobust                                         =======================================================================================                          coef    std err          t      P>|t|      [0.025      0.975]---------------------------------------------------------------------------------------Intercept            9472.6854     80.344    117.902      0.000    9310.175    9635.196C(E)[T.2]            1381.6706     77.319     17.870      0.000    1225.279    1538.063C(E)[T.3]            1730.7483    105.334     16.431      0.000    1517.690    1943.806C(M)[T.1]            3981.3769    101.175     39.351      0.000    3776.732    4186.022C(E)[T.2]:C(M)[T.1]  4902.5231    131.359     37.322      0.000    4636.825    5168.222C(E)[T.3]:C(M)[T.1]  3066.0351    149.330     20.532      0.000    2763.986    3368.084X                     496.9870      5.566     89.283      0.000     485.728     508.246==============================================================================Omnibus:                       74.761   Durbin-Watson:                   2.244Prob(Omnibus):                  0.000   Jarque-Bera (JB):             1037.873Skew:                          -4.103   Prob(JB):                    4.25e-226Kurtosis:                      24.776   Cond. No.                         79.0==============================================================================Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.df_resid    ssr  df_diff     ss_diff     F     Pr(>F)0      41.0  4.328072e+07      0.0           NaN         NaN           NaN1      39.0  1.178168e+06      2.0  4.210255e+07  696.844466  3.025504e-31

The design matrix as a DataFrame

interM_lm.model.data.orig_exog[:5]
Intercept C(E)[T.2] C(E)[T.3] C(M)[T.1] C(E)[T.2]:C(M)[T.1] C(E)[T.3]:C(M)[T.1] X 0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 1 1.0 0.0 1.0 0.0 0.0 0.0 1.0 2 1.0 0.0 1.0 1.0 0.0 1.0 1.0 3 1.0 1.0 0.0 0.0 0.0 0.0 1.0 4 1.0 0.0 1.0 0.0 0.0 0.0 1.0

The design matrix as an ndarray

interM_lm.model.exoginterM_lm.model.exog_names
[‘Intercept’, ‘C(E)[T.2]’, ‘C(E)[T.3]’, ‘C(M)[T.1]’, ‘C(E)[T.2]:C(M)[T.1]’, ‘C(E)[T.3]:C(M)[T.1]’, ‘X’]
infl = interM_lm.get_influence()resid = infl.resid_studentized_internalplt.figure(figsize=(6,6))for values, group in factor_groups:    i,j = values    idx = group.index    plt.scatter(X[idx], resid[idx], marker=symbols[j], color=colors[i-1],            s=144, edgecolors='black')plt.xlabel('X');plt.ylabel('standardized resids');

这里写图片描述

Looks like one observation is an outlier.

drop_idx = abs(resid).argmax()print(drop_idx)  # zero-based indexidx = salary_table.index.drop(drop_idx)lm32 = ols('S ~ C(E) + X + C(M)', data=salary_table, subset=idx).fit()print(lm32.summary())print('\n')interX_lm32 = ols('S ~ C(E) * X + C(M)', data=salary_table, subset=idx).fit()print(interX_lm32.summary())print('\n')table3 = anova_lm(lm32, interX_lm32)print(table3)print('\n')interM_lm32 = ols('S ~ X + C(E) * C(M)', data=salary_table, subset=idx).fit()table4 = anova_lm(lm32, interM_lm32)print(table4)print('\n')
32                            OLS Regression Results                            ==============================================================================Dep. Variable:                      S   R-squared:                       0.955Model:                            OLS   Adj. R-squared:                  0.950Method:                 Least Squares   F-statistic:                     211.7Date:                Sun, 18 Jun 2017   Prob (F-statistic):           2.45e-26Time:                        20:01:03   Log-Likelihood:                -373.79No. Observations:                  45   AIC:                             757.6Df Residuals:                      40   BIC:                             766.6Df Model:                           4                                         Covariance Type:            nonrobust                                         ==============================================================================                 coef    std err          t      P>|t|      [0.025      0.975]------------------------------------------------------------------------------Intercept   8044.7518    392.781     20.482      0.000    7250.911    8838.592C(E)[T.2]   3129.5286    370.470      8.447      0.000    2380.780    3878.277C(E)[T.3]   2999.4451    416.712      7.198      0.000    2157.238    3841.652C(M)[T.1]   6866.9856    323.991     21.195      0.000    6212.175    7521.796X            545.7855     30.912     17.656      0.000     483.311     608.260==============================================================================Omnibus:                        2.511   Durbin-Watson:                   2.265Prob(Omnibus):                  0.285   Jarque-Bera (JB):                1.400Skew:                          -0.044   Prob(JB):                        0.496Kurtosis:                       2.140   Cond. No.                         33.1==============================================================================Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.                            OLS Regression Results                            ==============================================================================Dep. Variable:                      S   R-squared:                       0.959Model:                            OLS   Adj. R-squared:                  0.952Method:                 Least Squares   F-statistic:                     147.7Date:                Sun, 18 Jun 2017   Prob (F-statistic):           8.97e-25Time:                        20:01:03   Log-Likelihood:                -371.70No. Observations:                  45   AIC:                             757.4Df Residuals:                      38   BIC:                             770.0Df Model:                           6                                         Covariance Type:            nonrobust                                         ===============================================================================                  coef    std err          t      P>|t|      [0.025      0.975]-------------------------------------------------------------------------------Intercept    7266.0887    558.872     13.001      0.000    6134.711    8397.466C(E)[T.2]    4162.0846    685.728      6.070      0.000    2773.900    5550.269C(E)[T.3]    3940.4359    696.067      5.661      0.000    2531.322    5349.549C(M)[T.1]    7088.6387    345.587     20.512      0.000    6389.035    7788.243X             631.6892     53.950     11.709      0.000     522.473     740.905C(E)[T.2]:X  -125.5009     70.744     -1.774      0.084    -268.714      17.712C(E)[T.3]:X  -139.8410     90.728     -1.541      0.132    -323.511      43.829==============================================================================Omnibus:                        0.617   Durbin-Watson:                   2.194Prob(Omnibus):                  0.734   Jarque-Bera (JB):                0.728Skew:                           0.162   Prob(JB):                        0.695Kurtosis:                       2.468   Cond. No.                         68.7==============================================================================Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.   df_resid           ssr  df_diff       ss_diff         F    Pr(>F)0      40.0  4.320910e+07      0.0           NaN       NaN       NaN1      38.0  3.937424e+07      2.0  3.834859e+06  1.850508  0.171042   df_resid           ssr  df_diff       ss_diff            F        Pr(>F)0      40.0  4.320910e+07      0.0           NaN          NaN           NaN1      38.0  1.711881e+05      2.0  4.303791e+07  4776.734853  2.291239e-46

Replot the residuals

try:    resid = interM_lm32.get_influence().summary_frame()['standard_resid']except:    resid = interM_lm32.get_influence().summary_frame()['standard_resid']plt.figure(figsize=(6,6))for values, group in factor_groups:    i,j = values    idx = group.index    plt.scatter(X[idx], resid[idx], marker=symbols[j], color=colors[i-1],            s=144, edgecolors='black')plt.xlabel('X[~[32]]');plt.ylabel('standardized resids');

这里写图片描述

Plot the fitted values

lm_final = ols('S ~ X + C(E)*C(M)', data = salary_table.drop([drop_idx])).fit()mf = lm_final.model.data.orig_exoglstyle = ['-','--']plt.figure(figsize=(6,6))for values, group in factor_groups:    i,j = values    idx = group.index    plt.scatter(X[idx], S[idx], marker=symbols[j], color=colors[i-1],                s=144, edgecolors='black')    # drop NA because there is no idx 32 in the final model    plt.plot(mf.X[idx].dropna(), lm_final.fittedvalues[idx].dropna(),            ls=lstyle[j], color=colors[i-1])plt.xlabel('Experience');plt.ylabel('Salary');

这里写图片描述

From our first look at the data, the difference between Master’s and PhD in the management group is different than in the non-management group. This is an interaction between the two qualitative variables management,M and education,E. We can visualize this by first removing the effect of experience, then plotting the means within each of the 6 groups using interaction.plot.

U = S - X * interX_lm32.params['X']plt.figure(figsize=(6,6))interaction_plot(E, M, U, colors=['red','blue'], markers=['^','D'],        markersize=10, ax=plt.gca())

这里写图片描述

这里写图片描述

## Minority Employment Data
try:    jobtest_table = pd.read_table('jobtest.table')except:  # don't have data already    url = 'http://stats191.stanford.edu/data/jobtest.table'    jobtest_table = pd.read_table(url)factor_group = jobtest_table.groupby(['MINORITY'])fig, ax = plt.subplots(figsize=(6,6))colors = ['purple', 'green']markers = ['o', 'v']for factor, group in factor_group:    ax.scatter(group['TEST'], group['JPERF'], color=colors[factor],                marker=markers[factor], s=12**2)ax.set_xlabel('TEST');ax.set_ylabel('JPERF');

这里写图片描述

min_lm = ols('JPERF ~ TEST', data=jobtest_table).fit()print(min_lm.summary())
OLS Regression Results ============================================================================== Dep. Variable: JPERF R-squared: 0.517 Model: OLS Adj. R-squared: 0.490 Method: Least Squares F-statistic: 19.25 Date: Sun, 18 Jun 2017 Prob (F-statistic): 0.000356 Time: 20:02:38 Log-Likelihood: -36.614 No. Observations: 20 AIC: 77.23 Df Residuals: 18 BIC: 79.22 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] —————————————————————————— Intercept 1.0350 0.868 1.192 0.249 -0.789 2.859 TEST 2.3605 0.538 4.387 0.000 1.230 3.491 ============================================================================== Omnibus: 0.324 Durbin-Watson: 2.896 Prob(Omnibus): 0.850 Jarque-Bera (JB): 0.483 Skew: -0.186 Prob(JB): 0.785 Kurtosis: 2.336 Cond. No. 5.26 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
fig, ax = plt.subplots(figsize=(6,6));for factor, group in factor_group:    ax.scatter(group['TEST'], group['JPERF'], color=colors[factor],                marker=markers[factor], s=12**2)ax.set_xlabel('TEST')ax.set_ylabel('JPERF')fig = abline_plot(model_results = min_lm, ax=ax)

这里写图片描述

min_lm2 = ols('JPERF ~ TEST + TEST:MINORITY',        data=jobtest_table).fit()print(min_lm2.summary())
OLS Regression Results ============================================================================== Dep. Variable: JPERF R-squared: 0.632 Model: OLS Adj. R-squared: 0.589 Method: Least Squares F-statistic: 14.59 Date: Sun, 18 Jun 2017 Prob (F-statistic): 0.000204 Time: 20:02:55 Log-Likelihood: -33.891 No. Observations: 20 AIC: 73.78 Df Residuals: 17 BIC: 76.77 Df Model: 2 Covariance Type: nonrobust ================================================================================= coef std err t P>|t| [0.025 0.975] ——————————————————————————— Intercept 1.1211 0.780 1.437 0.169 -0.525 2.768 TEST 1.8276 0.536 3.412 0.003 0.698 2.958 TEST:MINORITY 0.9161 0.397 2.306 0.034 0.078 1.754 ============================================================================== Omnibus: 0.388 Durbin-Watson: 3.008 Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.514 Skew: 0.050 Prob(JB): 0.773 Kurtosis: 2.221 Cond. No. 5.96 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
fig, ax = plt.subplots(figsize=(6,6));for factor, group in factor_group:    ax.scatter(group['TEST'], group['JPERF'], color=colors[factor],                marker=markers[factor], s=12**2)fig = abline_plot(intercept = min_lm2.params['Intercept'],                 slope = min_lm2.params['TEST'], ax=ax, color='purple');fig = abline_plot(intercept = min_lm2.params['Intercept'],        slope = min_lm2.params['TEST'] + min_lm2.params['TEST:MINORITY'],        ax=ax, color='green');

这里写图片描述

min_lm3 = ols('JPERF ~ TEST + MINORITY', data = jobtest_table).fit()print(min_lm3.summary())
OLS Regression Results ============================================================================== Dep. Variable: JPERF R-squared: 0.572 Model: OLS Adj. R-squared: 0.522 Method: Least Squares F-statistic: 11.38 Date: Sun, 18 Jun 2017 Prob (F-statistic): 0.000731 Time: 20:02:56 Log-Likelihood: -35.390 No. Observations: 20 AIC: 76.78 Df Residuals: 17 BIC: 79.77 Df Model: 2 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] —————————————————————————— Intercept 0.6120 0.887 0.690 0.500 -1.260 2.483 TEST 2.2988 0.522 4.400 0.000 1.197 3.401 MINORITY 1.0276 0.691 1.487 0.155 -0.430 2.485 ============================================================================== Omnibus: 0.251 Durbin-Watson: 3.028 Prob(Omnibus): 0.882 Jarque-Bera (JB): 0.437 Skew: -0.059 Prob(JB): 0.804 Kurtosis: 2.286 Cond. No. 5.72 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
fig, ax = plt.subplots(figsize=(6,6));for factor, group in factor_group:    ax.scatter(group['TEST'], group['JPERF'], color=colors[factor],                marker=markers[factor], s=12**2)fig = abline_plot(intercept = min_lm3.params['Intercept'],                 slope = min_lm3.params['TEST'], ax=ax, color='purple');fig = abline_plot(intercept = min_lm3.params['Intercept'] + min_lm3.params['MINORITY'],        slope = min_lm3.params['TEST'], ax=ax, color='green');

这里写图片描述

min_lm4 = ols('JPERF ~ TEST * MINORITY', data = jobtest_table).fit()print(min_lm4.summary())
OLS Regression Results ============================================================================== Dep. Variable: JPERF R-squared: 0.664 Model: OLS Adj. R-squared: 0.601 Method: Least Squares F-statistic: 10.55 Date: Sun, 18 Jun 2017 Prob (F-statistic): 0.000451 Time: 20:03:12 Log-Likelihood: -32.971 No. Observations: 20 AIC: 73.94 Df Residuals: 16 BIC: 77.92 Df Model: 3 Covariance Type: nonrobust ================================================================================= coef std err t P>|t| [0.025 0.975] ——————————————————————————— Intercept 2.0103 1.050 1.914 0.074 -0.216 4.236 TEST 1.3134 0.670 1.959 0.068 -0.108 2.735 MINORITY -1.9132 1.540 -1.242 0.232 -5.179 1.352 TEST:MINORITY 1.9975 0.954 2.093 0.053 -0.026 4.021 ============================================================================== Omnibus: 3.377 Durbin-Watson: 3.015 Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.330 Skew: 0.120 Prob(JB): 0.514 Kurtosis: 1.760 Cond. No. 13.8 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
fig, ax = plt.subplots(figsize=(8,6));for factor, group in factor_group:    ax.scatter(group['TEST'], group['JPERF'], color=colors[factor],                marker=markers[factor], s=12**2)fig = abline_plot(intercept = min_lm4.params['Intercept'],                 slope = min_lm4.params['TEST'], ax=ax, color='purple');fig = abline_plot(intercept = min_lm4.params['Intercept'] + min_lm4.params['MINORITY'],        slope = min_lm4.params['TEST'] + min_lm4.params['TEST:MINORITY'],        ax=ax, color='green');

这里写图片描述

# is there any effect of MINORITY on slope or intercept?table5 = anova_lm(min_lm, min_lm4)print(table5)
df_resid ssr df_diff ss_diff F Pr(>F) 0 18.0 45.568297 0.0 NaN NaN NaN 1 16.0 31.655473 2.0 13.912824 3.516061 0.054236
# is there any effect of MINORITY on intercepttable6 = anova_lm(min_lm, min_lm3)print(table6)
df_resid ssr df_diff ss_diff F Pr(>F) 0 18.0 45.568297 0.0 NaN NaN NaN 1 17.0 40.321546 1.0 5.246751 2.212087 0.155246
# is there any effect of MINORITY on slopetable7 = anova_lm(min_lm, min_lm2)print(table7)
df_resid ssr df_diff ss_diff F Pr(>F) 0 18.0 45.568297 0.0 NaN NaN NaN 1 17.0 34.707653 1.0 10.860644 5.319603 0.033949
# is it just the slope or both?table8 = anova_lm(min_lm2, min_lm4)print(table8)
df_resid ssr df_diff ss_diff F Pr(>F) 0 17.0 34.707653 0.0 NaN NaN NaN 1 16.0 31.655473 1.0 3.05218 1.542699 0.232115
%matplotlib inlinefrom __future__ import print_functionfrom statsmodels.compat import urlopenimport numpy as npnp.set_printoptions(precision=4, suppress=True)import statsmodels.api as smimport pandas as pdpd.set_option("display.width", 100)import matplotlib.pyplot as pltfrom statsmodels.formula.api import olsfrom statsmodels.graphics.api import interaction_plot, abline_plotfrom statsmodels.stats.anova import anova_lm
## One-way ANOVA
try:    rehab_table = pd.read_csv('rehab.table')except:    url = 'http://stats191.stanford.edu/data/rehab.csv'    rehab_table = pd.read_table(url, delimiter=",")    rehab_table.to_csv('rehab.table')fig, ax = plt.subplots(figsize=(8,6))fig = rehab_table.boxplot('Time', 'Fitness', ax=ax, grid=False)

这里写图片描述

rehab_lm = ols('Time ~ C(Fitness)', data=rehab_table).fit()table9 = anova_lm(rehab_lm)print(table9)print(rehab_lm.model.data.orig_exog)
df sum_sq mean_sq F PR(>F) C(Fitness) 2.0 672.0 336.000000 16.961538 0.000041 Residual 21.0 416.0 19.809524 NaN NaN Intercept C(Fitness)[T.2] C(Fitness)[T.3] 0 1.0 0.0 0.0 1 1.0 0.0 0.0 2 1.0 0.0 0.0 3 1.0 0.0 0.0 4 1.0 0.0 0.0 5 1.0 0.0 0.0 6 1.0 0.0 0.0 7 1.0 0.0 0.0 8 1.0 1.0 0.0 9 1.0 1.0 0.0 10 1.0 1.0 0.0 11 1.0 1.0 0.0 12 1.0 1.0 0.0 13 1.0 1.0 0.0 14 1.0 1.0 0.0 15 1.0 1.0 0.0 16 1.0 1.0 0.0 17 1.0 1.0 0.0 18 1.0 0.0 1.0 19 1.0 0.0 1.0 20 1.0 0.0 1.0 21 1.0 0.0 1.0 22 1.0 0.0 1.0 23 1.0 0.0 1.0
print(rehab_lm.summary())
OLS Regression Results ============================================================================== Dep. Variable: Time R-squared: 0.618 Model: OLS Adj. R-squared: 0.581 Method: Least Squares F-statistic: 16.96 Date: Sun, 18 Jun 2017 Prob (F-statistic): 4.13e-05 Time: 20:13:37 Log-Likelihood: -68.286 No. Observations: 24 AIC: 142.6 Df Residuals: 21 BIC: 146.1 Df Model: 2 Covariance Type: nonrobust =================================================================================== coef std err t P>|t| [0.025 0.975] ———————————————————————————– Intercept 38.0000 1.574 24.149 0.000 34.728 41.272 C(Fitness)[T.2] -6.0000 2.111 -2.842 0.010 -10.390 -1.610 C(Fitness)[T.3] -14.0000 2.404 -5.824 0.000 -18.999 -9.001 ============================================================================== Omnibus: 0.163 Durbin-Watson: 2.209 Prob(Omnibus): 0.922 Jarque-Bera (JB): 0.211 Skew: -0.163 Prob(JB): 0.900 Kurtosis: 2.675 Cond. No. 3.80 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.## Two-way ANOVA
try:    kidney_table = pd.read_table('./kidney.table',delim_whitespace=True)except:    url = 'http://stats191.stanford.edu/data/kidney.table'    kidney_table = pd.read_table(url, delim_whitespace=True)
Explore the dataset
kidney_table.head(10)
Days Duration Weight ID 0 0.0 1 1 1 1 2.0 1 1 2 2 1.0 1 1 3 3 3.0 1 1 4 4 0.0 1 1 5 5 2.0 1 1 6 6 0.0 1 1 7 7 5.0 1 1 8 8 6.0 1 1 9 9 8.0 1 1 10
type(kidney_table)
pandas.core.frame.DataFrame
kt=kidney_tablekt.keys()
Index([u'Days', u'Duration', u'Weight', u'ID'], dtype='object')
kidney_table.groupby(['Weight', 'Duration']).size()
Weight  Duration1       1           10        2           102       1           10        2           103       1           10        2           10dtype: int64

Balanced panel

kt = kidney_tableplt.figure(figsize=(8,6))fig = interaction_plot(kt['Weight'], kt['Duration'], np.log(kt['Days']+1),        colors=['red', 'blue'], markers=['D','^'], ms=10, ax=plt.gca())

这里写图片描述

You have things available in the calling namespace available in the formula evaluation namespace

kidney_lm = ols('np.log(Days+1) ~ C(Duration) * C(Weight)', data=kt).fit()table10 = anova_lm(kidney_lm)print(anova_lm(ols('np.log(Days+1) ~ C(Duration) + C(Weight)',                data=kt).fit(), kidney_lm))print(anova_lm(ols('np.log(Days+1) ~ C(Duration)', data=kt).fit(),               ols('np.log(Days+1) ~ C(Duration) + C(Weight, Sum)',                   data=kt).fit()))print(anova_lm(ols('np.log(Days+1) ~ C(Weight)', data=kt).fit(),               ols('np.log(Days+1) ~ C(Duration) + C(Weight, Sum)',                   data=kt).fit()))
   df_resid        ssr  df_diff   ss_diff        F    Pr(>F)0      56.0  29.624856      0.0       NaN      NaN       NaN1      54.0  28.989198      2.0  0.635658  0.59204  0.556748   df_resid        ssr  df_diff    ss_diff          F    Pr(>F)0      58.0  46.596147      0.0        NaN        NaN       NaN1      56.0  29.624856      2.0  16.971291  16.040454  0.000003   df_resid        ssr  df_diff   ss_diff         F   Pr(>F)0      57.0  31.964549      0.0       NaN       NaN      NaN1      56.0  29.624856      1.0  2.339693  4.422732  0.03997

Sum of squares

Illustrates the use of different types of sums of squares (I,II,II)
and how the Sum contrast can be used to produce the same output between
the 3.

Types I and II are equivalent under a balanced design.

Don’t use Type III with non-orthogonal contrast - ie., Treatment

sum_lm = ols('np.log(Days+1) ~ C(Duration, Sum) * C(Weight, Sum)',            data=kt).fit()print(anova_lm(sum_lm))print(anova_lm(sum_lm, typ=2))print(anova_lm(sum_lm, typ=3))
                                   df     sum_sq   mean_sq          F    PR(>F)C(Duration, Sum)                  1.0   2.339693  2.339693   4.358293  0.041562C(Weight, Sum)                    2.0  16.971291  8.485645  15.806745  0.000004C(Duration, Sum):C(Weight, Sum)   2.0   0.635658  0.317829   0.592040  0.556748Residual                         54.0  28.989198  0.536837        NaN       NaN                                    sum_sq    df          F    PR(>F)C(Duration, Sum)                  2.339693   1.0   4.358293  0.041562C(Weight, Sum)                   16.971291   2.0  15.806745  0.000004C(Duration, Sum):C(Weight, Sum)   0.635658   2.0   0.592040  0.556748Residual                         28.989198  54.0        NaN       NaN                                     sum_sq    df           F        PR(>F)Intercept                        156.301830   1.0  291.153237  2.077589e-23C(Duration, Sum)                   2.339693   1.0    4.358293  4.156170e-02C(Weight, Sum)                    16.971291   2.0   15.806745  3.944502e-06C(Duration, Sum):C(Weight, Sum)    0.635658   2.0    0.592040  5.567479e-01Residual                          28.989198  54.0         NaN           NaN
nosum_lm = ols('np.log(Days+1) ~ C(Duration, Treatment) * C(Weight, Treatment)',            data=kt).fit()print(anova_lm(nosum_lm))print(anova_lm(nosum_lm, typ=2))print(anova_lm(nosum_lm, typ=3))
                                               df     sum_sq   mean_sq          F    PR(>F)C(Duration, Treatment)                        1.0   2.339693  2.339693   4.358293  0.041562C(Weight, Treatment)                          2.0  16.971291  8.485645  15.806745  0.000004C(Duration, Treatment):C(Weight, Treatment)   2.0   0.635658  0.317829   0.592040  0.556748Residual                                     54.0  28.989198  0.536837        NaN       NaN                                                sum_sq    df          F    PR(>F)C(Duration, Treatment)                        2.339693   1.0   4.358293  0.041562C(Weight, Treatment)                         16.971291   2.0  15.806745  0.000004C(Duration, Treatment):C(Weight, Treatment)   0.635658   2.0   0.592040  0.556748Residual                                     28.989198  54.0        NaN       NaN                                                sum_sq    df          F    PR(>F)Intercept                                    10.427596   1.0  19.424139  0.000050C(Duration, Treatment)                        0.054293   1.0   0.101134  0.751699C(Weight, Treatment)                         11.703387   2.0  10.900317  0.000106C(Duration, Treatment):C(Weight, Treatment)   0.635658   2.0   0.592040  0.556748Residual                                     28.989198  54.0        NaN       NaN
原创粉丝点击