并发编程之线程安全HashMap_ConcurrentHashMap

来源:互联网 发布:mysql 索引 性能提升 编辑:程序博客网 时间:2024/06/06 06:47

此篇博客所有源码均来自JDK 1.8

HashMap是我们用得非常频繁的一个集合,但是由于它是非线程安全的,在多线程环境下,put操作是有可能产生死循环的,导致CPU利用率接近100%。为了解决该问题,提供了Hashtable和Collections.synchronizedMap(hashMap)两种解决方案,但是这两种方案都是对读写加锁,独占式,一个线程在读时其他线程必须等待,吞吐量较低,性能较为低下。故而Doug Lea大神给我们提供了高性能的线程安全HashMap:ConcurrentHashMap。

ConcurrentHashMap的实现

ConcurrentHashMap作为Concurrent一族,其有着高效地并发操作,相比Hashtable的笨重,ConcurrentHashMap则更胜一筹了。

在1.8版本以前,ConcurrentHashMap采用分段锁的概念,使锁更加细化,但是1.8已经改变了这种思路,而是利用CAS+Synchronized来保证并发更新的安全,当然底层采用数组+链表+红黑树的存储结构。

关于1.7和1.8的区别请参考占小狼博客:谈谈ConcurrentHashMap1.7和1.8的不同实现:http://www.jianshu.com/p/e694f1e868ec

我们从如下几个部分全面了解ConcurrentHashMap在1.8中是如何实现的:

  1. 重要概念
  2. 重要内部类
  3. ConcurrentHashMap的初始化
  4. put操作
  5. get操作
  6. size操作
  7. 扩容
  8. 红黑树转换

重要概念

ConcurrentHashMap定义了如下几个常量:

// 最大容量:2^30=1073741824private static final int MAXIMUM_CAPACITY = 1 << 30;// 默认初始值,必须是2的幕数private static final int DEFAULT_CAPACITY = 16;//static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;//private static final int DEFAULT_CONCURRENCY_LEVEL = 16;// private static final float LOAD_FACTOR = 0.75f;// 链表转红黑树阀值,> 8 链表转换为红黑树static final int TREEIFY_THRESHOLD = 8;//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))static final int UNTREEIFY_THRESHOLD = 6;//static final int MIN_TREEIFY_CAPACITY = 64;//private static final int MIN_TRANSFER_STRIDE = 16;//private static int RESIZE_STAMP_BITS = 16;// 2^15-1,help resize的最大线程数private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;// 32-16=16,sizeCtl中记录size大小的偏移量private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;// forwarding nodes的hash值static final int MOVED     = -1; // 树根节点的hash值static final int TREEBIN   = -2; // ReservationNode的hash值static final int RESERVED  = -3; // 可用处理器数量static final int NCPU = Runtime.getRuntime().availableProcessors();
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

上面是ConcurrentHashMap定义的常量,简单易懂,就不多阐述了。下面介绍ConcurrentHashMap几个很重要的概念。

  1. table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
  2. nextTable:扩容时新生成的数据,数组为table的两倍;
  3. Node:节点,保存key-value的数据结构;
  4. ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
  5. sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同 
    • 负数代表正在进行初始化或扩容操作
    • -1代表正在初始化
    • -N 表示有N-1个线程正在进行扩容操作
    • 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小

重要内部类

为了实现ConcurrentHashMap,Doug Lea提供了许多内部类来进行辅助实现,如Node,TreeNode,TreeBin等等。下面我们就一起来看看ConcurrentHashMap几个重要的内部类。

Node

作为ConcurrentHashMap中最核心、最重要的内部类,Node担负着重要角色:key-value键值对。所有插入ConCurrentHashMap的中数据都将会包装在Node中。定义如下:

    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        volatile V val;             //带有volatile,保证可见性        volatile Node<K,V> next;    //下一个节点的指针        Node(int hash, K key, V val, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.val = val;            this.next = next;        }        public final K getKey()       { return key; }        public final V getValue()     { return val; }        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }        public final String toString(){ return key + "=" + val; }        /** 不允许修改value的值 */        public final V setValue(V value) {            throw new UnsupportedOperationException();        }        public final boolean equals(Object o) {            Object k, v, u; Map.Entry<?,?> e;            return ((o instanceof Map.Entry) &&                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&                    (v = e.getValue()) != null &&                    (k == key || k.equals(key)) &&                    (v == (u = val) || v.equals(u)));        }        /**  赋值get()方法 */        Node<K,V> find(int h, Object k) {            Node<K,V> e = this;            if (k != null) {                do {                    K ek;                    if (e.hash == h &&                            ((ek = e.key) == k || (ek != null && k.equals(ek))))                        return e;                } while ((e = e.next) != null);            }            return null;        }    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

在Node内部类中,其属性value、next都是带有volatile的。同时其对value的setter方法进行了特殊处理,不允许直接调用其setter方法来修改value的值。最后Node还提供了find方法来赋值map.get()。

TreeNode

我们在学习HashMap的时候就知道,HashMap的核心数据结构就是链表。在ConcurrentHashMap中就不一样了,如果链表的数据过长是会转换为红黑树来处理。当它并不是直接转换,而是将这些链表的节点包装成TreeNode放在TreeBin对象中,然后由TreeBin完成红黑树的转换。所以TreeNode也必须是ConcurrentHashMap的一个核心类,其为树节点类,定义如下:

    static final class TreeNode<K,V> extends Node<K,V> {        TreeNode<K,V> parent;  // red-black tree links        TreeNode<K,V> left;        TreeNode<K,V> right;        TreeNode<K,V> prev;    // needed to unlink next upon deletion        boolean red;        TreeNode(int hash, K key, V val, Node<K,V> next,                 TreeNode<K,V> parent) {            super(hash, key, val, next);            this.parent = parent;        }        Node<K,V> find(int h, Object k) {            return findTreeNode(h, k, null);        }        //查找hash为h,key为k的节点        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {            if (k != null) {                TreeNode<K,V> p = this;                do  {                    int ph, dir; K pk; TreeNode<K,V> q;                    TreeNode<K,V> pl = p.left, pr = p.right;                    if ((ph = p.hash) > h)                        p = pl;                    else if (ph < h)                        p = pr;                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))                        return p;                    else if (pl == null)                        p = pr;                    else if (pr == null)                        p = pl;                    else if ((kc != null ||                            (kc = comparableClassFor(k)) != null) &&                            (dir = compareComparables(kc, k, pk)) != 0)                        p = (dir < 0) ? pl : pr;                    else if ((q = pr.findTreeNode(h, k, kc)) != null)                        return q;                    else                        p = pl;                } while (p != null);            }            return null;        }    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

源码展示TreeNode继承Node,且提供了findTreeNode用来查找查找hash为h,key为k的节点。

TreeBin

该类并不负责key-value的键值对包装,它用于在链表转换为红黑树时包装TreeNode节点,也就是说ConcurrentHashMap红黑树存放是TreeBin,不是TreeNode。该类封装了一系列的方法,包括putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion。由于TreeBin的代码太长我们这里只展示构造方法(构造方法就是构造红黑树的过程):

    static final class TreeBin<K,V> extends Node<K,V> {        TreeNode<K, V> root;        volatile TreeNode<K, V> first;        volatile Thread waiter;        volatile int lockState;        static final int WRITER = 1; // set while holding write lock        static final int WAITER = 2; // set when waiting for write lock        static final int READER = 4; // increment value for setting read lock        TreeBin(TreeNode<K, V> b) {            super(TREEBIN, null, null, null);            this.first = b;            TreeNode<K, V> r = null;            for (TreeNode<K, V> x = b, next; x != null; x = next) {                next = (TreeNode<K, V>) x.next;                x.left = x.right = null;                if (r == null) {                    x.parent = null;                    x.red = false;                    r = x;                } else {                    K k = x.key;                    int h = x.hash;                    Class<?> kc = null;                    for (TreeNode<K, V> p = r; ; ) {                        int dir, ph;                        K pk = p.key;                        if ((ph = p.hash) > h)                            dir = -1;                        else if (ph < h)                            dir = 1;                        else if ((kc == null &&                                (kc = comparableClassFor(k)) == null) ||                                (dir = compareComparables(kc, k, pk)) == 0)                            dir = tieBreakOrder(k, pk);                        TreeNode<K, V> xp = p;                        if ((p = (dir <= 0) ? p.left : p.right) == null) {                            x.parent = xp;                            if (dir <= 0)                                xp.left = x;                            else                                xp.right = x;                            r = balanceInsertion(r, x);                            break;                        }                    }                }            }            this.root = r;            assert checkInvariants(root);        }        /** 省略很多代码 */    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

通过构造方法是不是发现了部分端倪,构造方法就是在构造一个红黑树的过程。

ForwardingNode

这是一个真正的辅助类,该类仅仅只存活在ConcurrentHashMap扩容操作时。只是一个标志节点,并且指向nextTable,它提供find方法而已。该类也是集成Node节点,其hash为-1,key、value、next均为null。如下:

    static final class ForwardingNode<K,V> extends Node<K,V> {        final Node<K,V>[] nextTable;        ForwardingNode(Node<K,V>[] tab) {            super(MOVED, null, null, null);            this.nextTable = tab;        }        Node<K,V> find(int h, Object k) {            // loop to avoid arbitrarily deep recursion on forwarding nodes            outer: for (Node<K,V>[] tab = nextTable;;) {                Node<K,V> e; int n;                if (k == null || tab == null || (n = tab.length) == 0 ||                        (e = tabAt(tab, (n - 1) & h)) == null)                    return null;                for (;;) {                    int eh; K ek;                    if ((eh = e.hash) == h &&                            ((ek = e.key) == k || (ek != null && k.equals(ek))))                        return e;                    if (eh < 0) {                        if (e instanceof ForwardingNode) {                            tab = ((ForwardingNode<K,V>)e).nextTable;                            continue outer;                        }                        else                            return e.find(h, k);                    }                    if ((e = e.next) == null)                        return null;                }            }        }    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

构造函数

ConcurrentHashMap提供了一系列的构造函数用于创建ConcurrentHashMap对象:

    public ConcurrentHashMap() {    }    public ConcurrentHashMap(int initialCapacity) {        if (initialCapacity < 0)            throw new IllegalArgumentException();        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?                   MAXIMUM_CAPACITY :                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));        this.sizeCtl = cap;    }    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {        this.sizeCtl = DEFAULT_CAPACITY;        putAll(m);    }    public ConcurrentHashMap(int initialCapacity, float loadFactor) {        this(initialCapacity, loadFactor, 1);    }    public ConcurrentHashMap(int initialCapacity,                             float loadFactor, int concurrencyLevel) {        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)            throw new IllegalArgumentException();        if (initialCapacity < concurrencyLevel)   // Use at least as many bins            initialCapacity = concurrencyLevel;   // as estimated threads        long size = (long)(1.0 + (long)initialCapacity / loadFactor);        int cap = (size >= (long)MAXIMUM_CAPACITY) ?            MAXIMUM_CAPACITY : tableSizeFor((int)size);        this.sizeCtl = cap;    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

初始化: initTable()

ConcurrentHashMap的初始化主要由initTable()方法实现,在上面的构造函数中我们可以看到,其实ConcurrentHashMap在构造函数中并没有做什么事,仅仅只是设置了一些参数而已。其真正的初始化是发生在插入的时候,例如put、merge、compute、computeIfAbsent、computeIfPresent操作时。其方法定义如下:

    private final Node<K,V>[] initTable() {        Node<K,V>[] tab; int sc;        while ((tab = table) == null || tab.length == 0) {            //sizeCtl < 0 表示有其他线程在初始化,该线程必须挂起            if ((sc = sizeCtl) < 0)                Thread.yield();            // 如果该线程获取了初始化的权利,则用CAS将sizeCtl设置为-1,表示本线程正在初始化            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {                    // 进行初始化                try {                    if ((tab = table) == null || tab.length == 0) {                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;                        @SuppressWarnings("unchecked")                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];                        table = tab = nt;                        // 下次扩容的大小                        sc = n - (n >>> 2); ///相当于0.75*n 设置一个扩容的阈值                      }                } finally {                    sizeCtl = sc;                }                break;            }        }        return tab;    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

初始化方法initTable()的关键就在于sizeCtl,该值默认为0,如果在构造函数时有参数传入该值则为2的幂次方。该值如果 < 0,表示有其他线程正在初始化,则必须暂停该线程。如果线程获得了初始化的权限则先将sizeCtl设置为-1,防止有其他线程进入,最后将sizeCtl设置0.75 * n,表示扩容的阈值。

put操作

ConcurrentHashMap最常用的put、get操作,ConcurrentHashMap的put操作与HashMap并没有多大区别,其核心思想依然是根据hash值计算节点插入在table的位置,如果该位置为空,则直接插入,否则插入到链表或者树中。但是ConcurrentHashMap会涉及到多线程情况就会复杂很多。我们先看源代码,然后根据源代码一步一步分析:

    public V put(K key, V value) {        return putVal(key, value, false);    }    final V putVal(K key, V value, boolean onlyIfAbsent) {        //key、value均不能为null        if (key == null || value == null) throw new NullPointerException();        //计算hash值        int hash = spread(key.hashCode());        int binCount = 0;        for (Node<K,V>[] tab = table;;) {            Node<K,V> f; int n, i, fh;            // table为null,进行初始化工作            if (tab == null || (n = tab.length) == 0)                tab = initTable();            //如果i位置没有节点,则直接插入,不需要加锁            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {                if (casTabAt(tab, i, null,                        new Node<K,V>(hash, key, value, null)))                    break;                   // no lock when adding to empty bin            }            // 有线程正在进行扩容操作,则先帮助扩容            else if ((fh = f.hash) == MOVED)                tab = helpTransfer(tab, f);            else {                V oldVal = null;                //对该节点进行加锁处理(hash值相同的链表的头节点),对性能有点儿影响                synchronized (f) {                    if (tabAt(tab, i) == f) {                        //fh > 0 表示为链表,将该节点插入到链表尾部                        if (fh >= 0) {                            binCount = 1;                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                //hash 和 key 都一样,替换value                                if (e.hash == hash &&                                        ((ek = e.key) == key ||                                                (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    //putIfAbsent()                                    if (!onlyIfAbsent)                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                //链表尾部  直接插入                                if ((e = e.next) == null) {                                    pred.next = new Node<K,V>(hash, key,                                            value, null);                                    break;                                }                            }                        }                        //树节点,按照树的插入操作进行插入                        else if (f instanceof TreeBin) {                            Node<K,V> p;                            binCount = 2;                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                    value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }                        }                    }                }                if (binCount != 0) {                    // 如果链表长度已经达到临界值8 就需要把链表转换为树结构                    if (binCount >= TREEIFY_THRESHOLD)                        treeifyBin(tab, i);                    if (oldVal != null)                        return oldVal;                    break;                }            }        }        //size + 1          addCount(1L, binCount);        return null;    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

按照上面的源码,我们可以确定put整个流程如下:

  • 判空;ConcurrentHashMap的key、value都不允许为null
  • 计算hash。利用方法计算hash值。
    static final int spread(int h) {        return (h ^ (h >>> 16)) & HASH_BITS;    }
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
  • 遍历table,进行节点插入操作,过程如下: 
    • 如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
    • 根据hash值获取节点的位置i,若该位置为空,则直接插入,这个过程是不需要加锁的。计算f位置:i=(n - 1) & hash
    • 如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作
    • 如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
    • 若链表长度 > TREEIFY_THRESHOLD(默认是8),则将链表转换为红黑树结构
  • 调用addCount方法,ConcurrentHashMap的size + 1

这里整个put操作已经完成。

get操作

ConcurrentHashMap的get操作还是挺简单的,无非就是通过hash来找key相同的节点而已,当然需要区分链表和树形两种情况。

    public V get(Object key) {        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;        // 计算hash        int h = spread(key.hashCode());        if ((tab = table) != null && (n = tab.length) > 0 &&                (e = tabAt(tab, (n - 1) & h)) != null) {            // 搜索到的节点key与传入的key相同且不为null,直接返回这个节点            if ((eh = e.hash) == h) {                if ((ek = e.key) == key || (ek != null && key.equals(ek)))                    return e.val;            }            // 树            else if (eh < 0)                return (p = e.find(h, key)) != null ? p.val : null;            // 链表,遍历            while ((e = e.next) != null) {                if (e.hash == h &&                        ((ek = e.key) == key || (ek != null && key.equals(ek))))                    return e.val;            }        }        return null;    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

get操作的整个逻辑非常清楚: 
- 计算hash值 
- 判断table是否为空,如果为空,直接返回null 
- 根据hash值获取table中的Node节点(tabAt(tab, (n - 1) & h)),然后根据链表或者树形方式找到相对应的节点,返回其value值。

size 操作

ConcurrentHashMap的size()方法我们虽然用得不是很多,但是我们还是很有必要去了解的。ConcurrentHashMap的size()方法返回的是一个不精确的值,因为在进行统计的时候有其他线程正在进行插入和删除操作。当然为了这个不精确的值,ConcurrentHashMap也是操碎了心。

为了更好地统计size,ConcurrentHashMap提供了baseCount、counterCells两个辅助变量和一个CounterCell辅助内部类。

    @sun.misc.Contended static final class CounterCell {        volatile long value;        CounterCell(long x) { value = x; }    }    //ConcurrentHashMap中元素个数,但返回的不一定是当前Map的真实元素个数。基于CAS无锁更新    private transient volatile long baseCount;    private transient volatile CounterCell[] counterCells;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

这里我们需要清楚CounterCell 的定义

size()方法定义如下:

    public int size() {        long n = sumCount();        return ((n < 0L) ? 0 :                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :                (int)n);    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

内部调用sunmCount():

    final long sumCount() {        CounterCell[] as = counterCells; CounterCell a;        long sum = baseCount;        if (as != null) {            for (int i = 0; i < as.length; ++i) {                //遍历,所有counter求和                if ((a = as[i]) != null)                    sum += a.value;                 }        }        return sum;    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

sumCount()就是迭代counterCells来统计sum的过程。我们知道put操作时,肯定会影响size(),我们就来看看CouncurrentHashMap是如何为了这个不和谐的size()操碎了心。

在put()方法最后会调用addCount()方法,该方法主要做两件事,一件更新baseCount的值,第二件检测是否进行扩容,我们只看更新baseCount部分:

    private final void addCount(long x, int check) {        CounterCell[] as; long b, s;        // s = b + x,完成baseCount++操作;        if ((as = counterCells) != null ||            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {            CounterCell a; long v; int m;            boolean uncontended = true;            if (as == null || (m = as.length - 1) < 0 ||                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||                !(uncontended =                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {                //  多线程CAS发生失败时执行                fullAddCount(x, uncontended);                return;            }            if (check <= 1)                return;            s = sumCount();        }        // 检查是否进行扩容    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

x == 1,如果counterCells == null,则U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x),如果并发竞争比较大可能会导致改过程失败,如果失败则最终会调用fullAddCount()方法。其实为了提高高并发的时候baseCount可见性的失败问题,又避免一直重试,JDK 8 引入了类Striped64,其中LongAdder和DoubleAdder都是基于该类实现的,而CounterCell也是基于Striped64实现的。如果counterCells != null,且uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)也失败了,同样会调用fullAddCount()方法,最后调用sumCount()计算s。

其实在1.8中,它不推荐size()方法,而是推崇mappingCount()方法,该方法的定义和size()方法基本一致:

    public long mappingCount() {        long n = sumCount();        return (n < 0L) ? 0L : n; // ignore transient negative values    }
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

扩容操作

当ConcurrentHashMap中table元素个数达到了容量阈值(sizeCtl)时,则需要进行扩容操作。在put操作时最后一个会调用addCount(long x, int check),该方法主要做两个工作:1.更新baseCount;2.检测是否需要扩容操作。如下:

    private final void addCount(long x, int check) {        CounterCell[] as; long b, s;        // 更新baseCount        //check >= 0 :则需要进行扩容操作        if (check >= 0) {            Node<K,V>[] tab, nt; int n, sc;            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&                    (n = tab.length) < MAXIMUM_CAPACITY) {                int rs = resizeStamp(n);                if (sc < 0) {                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||                            transferIndex <= 0)                        break;                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))                        transfer(tab, nt);                }                //当前线程是唯一的或是第一个发起扩容的线程  此时nextTable=null                else if (U.compareAndSwapInt(this, SIZECTL, sc,                        (rs << RESIZE_STAMP_SHIFT) + 2))                    transfer(tab, null);                s = sumCount();            }        }    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

transfer()方法为ConcurrentHashMap扩容操作的核心方法。由于ConcurrentHashMap支持多线程扩容,而且也没有进行加锁,所以实现会变得有点儿复杂。整个扩容操作分为两步:

  1. 构建一个nextTable,其大小为原来大小的两倍,这个步骤是在单线程环境下完成的
  2. 将原来table里面的内容复制到nextTable中,这个步骤是允许多线程操作的,所以性能得到提升,减少了扩容的时间消耗

我们先来看看源代码,然后再一步一步分析:

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {        int n = tab.length, stride;        // 每核处理的量小于16,则强制赋值16        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)            stride = MIN_TRANSFER_STRIDE; // subdivide range        if (nextTab == null) {            // initiating            try {                @SuppressWarnings("unchecked")                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];        //构建一个nextTable对象,其容量为原来容量的两倍                nextTab = nt;            } catch (Throwable ex) {      // try to cope with OOME                sizeCtl = Integer.MAX_VALUE;                return;            }            nextTable = nextTab;            transferIndex = n;        }        int nextn = nextTab.length;        // 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab)        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);        // 当advance == true时,表明该节点已经处理过了        boolean advance = true;        boolean finishing = false; // to ensure sweep before committing nextTab        for (int i = 0, bound = 0;;) {            Node<K,V> f; int fh;            // 控制 --i ,遍历原hash表中的节点            while (advance) {                int nextIndex, nextBound;                if (--i >= bound || finishing)                    advance = false;                else if ((nextIndex = transferIndex) <= 0) {                    i = -1;                    advance = false;                }                // 用CAS计算得到的transferIndex                else if (U.compareAndSwapInt                        (this, TRANSFERINDEX, nextIndex,                                nextBound = (nextIndex > stride ?                                        nextIndex - stride : 0))) {                    bound = nextBound;                    i = nextIndex - 1;                    advance = false;                }            }            if (i < 0 || i >= n || i + n >= nextn) {                int sc;                // 已经完成所有节点复制了                if (finishing) {                    nextTable = null;                    table = nextTab;        // table 指向nextTable                    sizeCtl = (n << 1) - (n >>> 1);     // sizeCtl阈值为原来的1.5倍                    return;     // 跳出死循环,                }                // CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)                        return;                    finishing = advance = true;                    i = n; // recheck before commit                }            }            // 遍历的节点为null,则放入到ForwardingNode 指针节点            else if ((f = tabAt(tab, i)) == null)                advance = casTabAt(tab, i, null, fwd);            // f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了            // 这里是控制并发扩容的核心            else if ((fh = f.hash) == MOVED)                advance = true; // already processed            else {                // 节点加锁                synchronized (f) {                    // 节点复制工作                    if (tabAt(tab, i) == f) {                        Node<K,V> ln, hn;                        // fh >= 0 ,表示为链表节点                        if (fh >= 0) {                            // 构造两个链表  一个是原链表  另一个是原链表的反序排列                            int runBit = fh & n;                            Node<K,V> lastRun = f;                            for (Node<K,V> p = f.next; p != null; p = p.next) {                                int b = p.hash & n;                                if (b != runBit) {                                    runBit = b;                                    lastRun = p;                                }                            }                            if (runBit == 0) {                                ln = lastRun;                                hn = null;                            }                            else {                                hn = lastRun;                                ln = null;                            }                            for (Node<K,V> p = f; p != lastRun; p = p.next) {                                int ph = p.hash; K pk = p.key; V pv = p.val;                                if ((ph & n) == 0)                                    ln = new Node<K,V>(ph, pk, pv, ln);                                else                                    hn = new Node<K,V>(ph, pk, pv, hn);                            }                            // 在nextTable i 位置处插上链表                            setTabAt(nextTab, i, ln);                            // 在nextTable i + n 位置处插上链表                            setTabAt(nextTab, i + n, hn);                            // 在table i 位置处插上ForwardingNode 表示该节点已经处理过了                            setTabAt(tab, i, fwd);                            // advance = true 可以执行--i动作,遍历节点                            advance = true;                        }                        // 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致                        else if (f instanceof TreeBin) {                            TreeBin<K,V> t = (TreeBin<K,V>)f;                            TreeNode<K,V> lo = null, loTail = null;                            TreeNode<K,V> hi = null, hiTail = null;                            int lc = 0, hc = 0;                            for (Node<K,V> e = t.first; e != null; e = e.next) {                                int h = e.hash;                                TreeNode<K,V> p = new TreeNode<K,V>                                        (h, e.key, e.val, null, null);                                if ((h & n) == 0) {                                    if ((p.prev = loTail) == null)                                        lo = p;                                    else                                        loTail.next = p;                                    loTail = p;                                    ++lc;                                }                                else {                                    if ((p.prev = hiTail) == null)                                        hi = p;                                    else                                        hiTail.next = p;                                    hiTail = p;                                    ++hc;                                }                            }                            // 扩容后树节点个数若<=6,将树转链表                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :                                    (hc != 0) ? new TreeBin<K,V>(lo) : t;                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :                                    (lc != 0) ? new TreeBin<K,V>(hi) : t;                            setTabAt(nextTab, i, ln);                            setTabAt(nextTab, i + n, hn);                            setTabAt(tab, i, fwd);                            advance = true;                        }                    }                }            }        }    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153

上面的源码有点儿长,稍微复杂了一些,在这里我们抛弃它多线程环境,我们从单线程角度来看: 
1. 为每个内核分任务,并保证其不小于16 
2. 检查nextTable是否为null,如果是,则初始化nextTable,使其容量为table的两倍 
3. 死循环遍历节点,知道finished:节点从table复制到nextTable中,支持并发,请思路如下: 
- 如果节点 f 为null,则插入ForwardingNode(采用Unsafe.compareAndSwapObjectf方法实现),这个是触发并发扩容的关键 
- 如果f为链表的头节点(fh >= 0),则先构造一个反序链表,然后把他们分别放在nextTable的i和i + n位置,并将ForwardingNode 插入原节点位置,代表已经处理过了 
- 如果f为TreeBin节点,同样也是构造一个反序 ,同时需要判断是否需要进行unTreeify()操作,并把处理的结果分别插入到nextTable的i 和i+nw位置,并插入ForwardingNode 节点 
4. 所有节点复制完成后,则将table指向nextTable,同时更新sizeCtl = nextTable的0.75倍,完成扩容过程

在多线程环境下,ConcurrentHashMap用两点来保证正确性:ForwardingNode和synchronized。当一个线程遍历到的节点如果是ForwardingNode,则继续往后遍历,如果不是,则将该节点加锁,防止其他线程进入,完成后设置ForwardingNode节点,以便要其他线程可以看到该节点已经处理过了,如此交叉进行,高效而又安全。

下图是扩容的过程(来自:http://blog.csdn.net/u010723709/article/details/48007881):

这里写图片描述

在put操作时如果发现fh.hash = -1,则表示正在进行扩容操作,则当前线程会协助进行扩容操作。

            else if ((fh = f.hash) == MOVED)                tab = helpTransfer(tab, f);
  • 1
  • 2
  • 1
  • 2

helpTransfer()方法为协助扩容方法,当调用该方法的时候,nextTable一定已经创建了,所以该方法主要则是进行复制工作。如下:

    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {        Node<K,V>[] nextTab; int sc;        if (tab != null && (f instanceof ForwardingNode) &&                (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {            int rs = resizeStamp(tab.length);            while (nextTab == nextTable && table == tab &&                    (sc = sizeCtl) < 0) {                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                        sc == rs + MAX_RESIZERS || transferIndex <= 0)                    break;                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {                    transfer(tab, nextTab);                    break;                }            }            return nextTab;        }        return table;    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

转换红黑树

在put操作是,如果发现链表结构中的元素超过了TREEIFY_THRESHOLD(默认为8),则会把链表转换为红黑树,已便于提高查询效率。如下:

if (binCount >= TREEIFY_THRESHOLD)    treeifyBin(tab, i);
  • 1
  • 2
  • 1
  • 2

调用treeifyBin方法用与将链表转换为红黑树。

private final void treeifyBin(Node<K,V>[] tab, int index) {        Node<K,V> b; int n, sc;        if (tab != null) {            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)//如果table.length<64 就扩大一倍 返回                tryPresize(n << 1);            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {                synchronized (b) {                    if (tabAt(tab, index) == b) {                        TreeNode<K,V> hd = null, tl = null;                        //构造了一个TreeBin对象 把所有Node节点包装成TreeNode放进去                        for (Node<K,V> e = b; e != null; e = e.next) {                            TreeNode<K,V> p =                                new TreeNode<K,V>(e.hash, e.key, e.val,                                                  null, null);//这里只是利用了TreeNode封装 而没有利用TreeNode的next域和parent域                            if ((p.prev = tl) == null)                                hd = p;                            else                                tl.next = p;                            tl = p;                        }                        //在原来index的位置 用TreeBin替换掉原来的Node对象                        setTabAt(tab, index, new TreeBin<K,V>(hd));                    }                }            }        }    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

从上面源码可以看出,构建红黑树的过程是同步的,进入同步后过程如下: 
1. 根据table中index位置Node链表,重新生成一个hd为头结点的TreeNode 
2. 根据hd头结点,生成TreeBin树结构,并用TreeBin替换掉原来的Node对象。

整个红黑树的构建过程有点儿复杂,关于ConcurrentHashMap 红黑树的构建过程,我们后续分析。

【注】:ConcurrentHashMap的扩容和链表转红黑树稍微复杂点,后续另起博文分析


详细原文:http://blog.csdn.net/chenssy/article/details/73521950

原创粉丝点击