OkHttp源码分析

来源:互联网 发布:闪电网络测速工具 编辑:程序博客网 时间:2024/06/08 12:10

前言

当架构一个新的App,最先想到的框架应该要属图片框架和网络框架了,所以我打算花一些时间来研究这两方面框架的源码,图片加载框架我选的是Glide,如果有感兴趣的朋友可以去看看我之前写的Glide的源码分析http://blog.csdn.net/luofen521/article/details/71213440;网络框架我选的是Okhttp。

正文

这篇文章主要分析OkHttp3.8.1的源码,下面是OkHttp进行一次最基本的Get请求流程:

    /**     * Get请求     */    private void useGet() {        //1.创建OKHttpClient对象        OkHttpClient mOkHttpClient = new OkHttpClient();        //2.创建一个Request对象        Request request = new Request.Builder().url("http://www.baidu.com/").build();        //3.new Call        Call call = mOkHttpClient.newCall(request);        //4.请求加入调度        call.enqueue(new Callback() {            @Override            public void onFailure(Call call, IOException e) {                MainActivity.this.runOnUiThread(new Runnable() {                    @Override                    public void run() {                        Toast.makeText(MainActivity.this, "请求失败", Toast.LENGTH_LONG).show();                    }                });            }            @Override            public void onResponse(Call call, Response response) throws IOException {                //注意,这个方法是在子线程中回调的所以不能直接更新UI                final String result = response.body().string();                MainActivity.this.runOnUiThread(new Runnable() {                    @Override                    public void run() {                        Toast.makeText(MainActivity.this, "请求成功,结果:" + result, Toast.LENGTH_LONG).show();                    }                });            }        });    }

由上面的代码可知,一次OkHttp的完整请求,主要分为以下4个步骤:

  1. 创建一个OkHttpClient对象
  2. 构建一个Request对象,其中包含了url等信息
  3. 通过OkHttpClient和Request对象,构建出Call对象
  4. 把Call对象加入到调度中,并注入了一个Callback对象,以便对网络请求结果分发处理

这样就完成了一次完整的网络请求,网络请求完成以后,会回调Callback的响应方法,如果失败,则回调onFailure方法;如果成功,则回调onResponse方法,请求到的结果在其Response对象中,注意的一点就是,这两个方法都是在子线程中回调的。所以,如果要更新UI等操作,需要切换到主线程。

那我们来看看上述的四步,具体执行了哪些操作。

1.创建OkHttpClient

也就是下面这句代码:

OkHttpClient mOkHttpClient = new OkHttpClient();

我们到OkHttpClient中看看它的构造方法,如下:

  public OkHttpClient() {    this(new Builder());  }

可以看到,这里主要是创建了一个Builder对象,然后调用了OkHttpCilent重载的构造方法,我们先看看Builder的构造方法:

    public Builder() {      dispatcher = new Dispatcher();      protocols = DEFAULT_PROTOCOLS;      connectionSpecs = DEFAULT_CONNECTION_SPECS;      eventListenerFactory = EventListener.factory(EventListener.NONE);      proxySelector = ProxySelector.getDefault();      cookieJar = CookieJar.NO_COOKIES;      socketFactory = SocketFactory.getDefault();      hostnameVerifier = OkHostnameVerifier.INSTANCE;      certificatePinner = CertificatePinner.DEFAULT;      proxyAuthenticator = Authenticator.NONE;      authenticator = Authenticator.NONE;      connectionPool = new ConnectionPool();      dns = Dns.SYSTEM;      followSslRedirects = true;      followRedirects = true;      retryOnConnectionFailure = true;      connectTimeout = 10_000;      readTimeout = 10_000;      writeTimeout = 10_000;      pingInterval = 0;    }

可以看到Builder的构造方法,就是初始化了一堆对象,这些参数在后续的流程中会用到,到时候再回过头来关注细节。很明显,这就是Builder创建对象的模式,也就是用Builder对象来封装OkHttpClient初始化所需要的参数,然后传递Builder对象到OkHttpClient构造方法里,完成OkHttpClient对象属性的初始化。当创建一个对象需要很多参数时,这是一个比较好的方式,在OkHttp中,随处可见这种方式,接下来看看OkHttpClient的有参构造方法:

  OkHttpClient(Builder builder) {    this.dispatcher = builder.dispatcher;    this.proxy = builder.proxy;    this.protocols = builder.protocols;    this.connectionSpecs = builder.connectionSpecs;    this.interceptors = Util.immutableList(builder.interceptors);    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);    this.eventListenerFactory = builder.eventListenerFactory;    this.proxySelector = builder.proxySelector;    this.cookieJar = builder.cookieJar;    this.cache = builder.cache;    this.internalCache = builder.internalCache;    this.socketFactory = builder.socketFactory;    boolean isTLS = false;    for (ConnectionSpec spec : connectionSpecs) {      isTLS = isTLS || spec.isTls();    }    if (builder.sslSocketFactory != null || !isTLS) {      this.sslSocketFactory = builder.sslSocketFactory;      this.certificateChainCleaner = builder.certificateChainCleaner;    } else {      X509TrustManager trustManager = systemDefaultTrustManager();      this.sslSocketFactory = systemDefaultSslSocketFactory(trustManager);      this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);    }    this.hostnameVerifier = builder.hostnameVerifier;    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(        certificateChainCleaner);    this.proxyAuthenticator = builder.proxyAuthenticator;    this.authenticator = builder.authenticator;    this.connectionPool = builder.connectionPool;    this.dns = builder.dns;    this.followSslRedirects = builder.followSslRedirects;    this.followRedirects = builder.followRedirects;    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;    this.connectTimeout = builder.connectTimeout;    this.readTimeout = builder.readTimeout;    this.writeTimeout = builder.writeTimeout;    this.pingInterval = builder.pingInterval;  }

可以看到OkHttpClient的构造方法,就是初始化一些参数,这些参数包括证书验证、网络请求超时时间等。

2.创建Request对象

Request request = new Request.Builder().url("http://www.baidu.com/").build();

可以看出Request的创建方式也是Builder模式,然后通过链式调用可以给Request指定url、header等。接下里,我们看看具体构建细节。先看看Request中内部类Builder的构造方法:

    public Builder() {      this.method = "GET";      this.headers = new Headers.Builder();    }

这里首先指定了请求方式为”GET”的方式,然后创建了一个Headers的内部类Builder对象,用于保存header信息。
接下来,看看Request中内部类Builder的url方法,如下:

    public Builder url(String url) {      if (url == null) throw new NullPointerException("url == null");      // Silently replace web socket URLs with HTTP URLs.      if (url.regionMatches(true, 0, "ws:", 0, 3)) {        url = "http:" + url.substring(3);      } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {        url = "https:" + url.substring(4);      }      HttpUrl parsed = HttpUrl.parse(url);      if (parsed == null) throw new IllegalArgumentException("unexpected url: " + url);      return url(parsed);    }    public Builder url(HttpUrl url) {      if (url == null) throw new NullPointerException("url == null");      this.url = url;      return this;    }

这里,我们只关心主流程,在最后一行,调用了url(HttpUrl url)的重载方法,在这个方法里,为Builder指定了url,并把当前Builder对象返回。
最后看一下build方法

    public Request build() {      if (url == null) throw new IllegalStateException("url == null");      return new Request(this);    }

这里直接创建了一个Request对象,并把当前Builder的对象传递过去,很明显,就是把之前配置的请求方式、url、header等赋值给Request对象,看看Request的构造方法:

  Request(Builder builder) {    this.url = builder.url;    this.method = builder.method;    this.headers = builder.headers.build();    this.body = builder.body;    this.tag = builder.tag != null ? builder.tag : this;  }

可以看到,创建Request就是为其指定了请求方式、url、header等信息。

3.构建Call对象

在第1步创建出了OkHttpClient,在第2步,构建了携带请求信息的Request对象。第3步就是通过前两步得到的OkHttpClient对象和Request对象,构建出Call对象。如下:

Call call = mOkHttpClient.newCall(request);

我们到OkHttpClient中看看newCall方法,如下:

  @Override public Call newCall(Request request) {    return new RealCall(this, request, false /* for web socket */);  }

Call是一个接口,这里直接创建了它的实现类RealCall对象,并返回。接下来,看看RealCall的构造方法:

  RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {    final EventListener.Factory eventListenerFactory = client.eventListenerFactory();    this.client = client;    this.originalRequest = originalRequest;    this.forWebSocket = forWebSocket;    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);    // TODO(jwilson): this is unsafe publication and not threadsafe.    this.eventListener = eventListenerFactory.create(this);  }

可以看到,RealCall中持有了在前两步初始化的OkHttpClient对象和Request对象。

4.把Call加入调度

前三步都没有看到发起真正的网络请求,没错,网络请求的真正实现就是在第4步中完成的。先看Call怎么加入调度中的:

        call.enqueue(new Callback() {            @Override            public void onFailure(Call call, IOException e) {                MainActivity.this.runOnUiThread(new Runnable() {                    @Override                    public void run() {                        Toast.makeText(MainActivity.this, "请求失败", Toast.LENGTH_LONG).show();                    }                });            }            @Override            public void onResponse(Call call, Response response) throws IOException {                //注意,这个方法是在子线程中回调的所以不能直接更新UI                final String result = response.body().string();                MainActivity.this.runOnUiThread(new Runnable() {                    @Override                    public void run() {                        Toast.makeText(MainActivity.this, "请求成功,结果:" + result, Toast.LENGTH_LONG).show();                    }                });            }        });

enqueue方法会传递一个Callback对象进去,用于请求结束以后,接口回调。由于第3步得到的是一个RealCall对象,我们先来看看RealCall中的enqueue方法:

  @Override public void enqueue(Callback responseCallback) {    synchronized (this) {      if (executed) throw new IllegalStateException("Already Executed");      executed = true;    }    captureCallStackTrace();    client.dispatcher().enqueue(new AsyncCall(responseCallback));  }

可以看到,这个方法首先用synchronized关键字,锁住了当前对象,也就是RealCall对象,然后对executed字段进行判断,那executed是什么呢?它是用于表示Call实例有没有执行过,当为true时,表示已经执行过了,这里就会抛出”Alread Executed”的错误信息,可见,第三步得到的Call对象,只能被执行一次。
然后看最后一行,先是通过传递进来的Callback对象封装成了一个AsyncCall对象,那AsyncCall又是个什么类呢?它其实是RealCall中的内部类,我们来看看它的定义:

final class AsyncCall extends NamedRunnable {

AsyncCall继承于NamedRunnable,那NamedRunnable是继承Runnable么?我们来看看它的定义:

public abstract class NamedRunnable implements Runnable {

果然如此,那我们看看AsyncCall的构造方法:

    AsyncCall(Callback responseCallback) {      super("OkHttp %s", redactedUrl());      this.responseCallback = responseCallback;    }

可知,这里只是把回调对象赋值给了AsyncCall中的属性,我们继续回到RealCall类中的enqueue方法:

  @Override public void enqueue(Callback responseCallback) {    synchronized (this) {      if (executed) throw new IllegalStateException("Already Executed");      executed = true;    }    captureCallStackTrace();    client.dispatcher().enqueue(new AsyncCall(responseCallback));  }

在构建了一个Runnable的实现类AsyncCall以后,直接调用client.dispatcher().enqueue()方法。
client很明显就是一个OkHttpClient对象,看看它的dispatcher方法:

  public Dispatcher dispatcher() {    return dispatcher;  }

这里其实只是单纯地返回了dispatcher对象,那这个对象是哪里赋予初值的呢?这就要追溯到第1步,构建OkHttpClient对象时,其内部类的Builder的构造方法,部分代码如下:

    public Builder() {      dispatcher = new Dispatcher();      protocols = DEFAULT_PROTOCOLS;      //...    }

就在第一行,在创建OkHttpClient对象时,已经实例化好了Dispatcher对象,其构造方法里没有代码,就不贴出来了。接下里我们继续看得到dispatcher以后,调用其enqueue方法的逻辑:

  synchronized void enqueue(AsyncCall call) {    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {      runningAsyncCalls.add(call);      executorService().execute(call);    } else {      readyAsyncCalls.add(call);    }  }

可以看到该方法加了同步锁。并且该方法传递进来了一个Runnable的实现类AsyncCall对象。
这里,首先判断了runningAsyncCalls和runningCallsForHost的个数是否在限制内,如果在,就把传递进来的AsyncCall对象加入到runningAsyncCalls集合中,并调用了executorService().execute(call);去执行call;如果不在限制内,就把AsyncCall对象加入到readyAsyncCalls集合中。
我们来看看上述属性和方法的定义:

  private int maxRequests = 64;  private int maxRequestsPerHost = 5;  /** Ready async calls in the order they'll be run. */  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();  /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();  /** Returns the number of running calls that share a host with {@code call}. */  private int runningCallsForHost(AsyncCall call) {    int result = 0;    for (AsyncCall c : runningAsyncCalls) {      if (c.host().equals(call.host())) result++;    }    return result;  }

可知:
runningAsyncCalls: 正在执行的AsyncCall的个数,包括已经取消了的AsyncCall
readyAsyncCalls:准备执行的AsyncCall的个数
maxRequests:允许正在执行的AsyncCall最大个数,默认64
maxRequestsPerHost:允许每一个Host最多执行的AsyncCall个数
runningCallsForHost(AsyncCall call) :用于计算正在运行的AsyncCall队列中和当前AsyncCall同Host的个数。
上述代码代码到判断逻辑就是:
发起一个网络请求,会先判断当前正在请求的Runnable个数是否小于64,并且当前网络请求host是否小于5个请求,如果是,则把当前AsyncCall加入到正在请求的AsyncCall队列中去,并从通过线程池去执行该AsyncCall;如果不是,则把当前AsyncCall加入到等待的AsyncCall队列中。
这里,我们先看满足if条件时的逻辑,即调用了executorService().execute(call);方法,我们先来看executorService()方法:

  public synchronized ExecutorService executorService() {    if (executorService == null) {      executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,          new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));    }    return executorService;  }

注意,该方法用synchronized关键字,保证了ExecutorService为单例模式,这个方法其实就是返回了一个线程池对象,该线程池的创建模式为corePoolSiz为0,而maximumPoolSize为Integer的最大值,即2147483647个,当网络请求特别多的时候,会不会开启特别多的线程,导致手机的开销过大,影响性能呢?其实不会,因为maxRequests已经限制了AsyncCall的个数不能超过64。
如果在自己的项目中,有单独的线程池模版,可以自己实现executorService方法,统一管理线程池。
然后就是调用ExecutorService对象的execute方法,即调用了AsyncCall的run方法:
发现AsyncCall没有run方法的实现,我们去从它的父类NamedRunnable中寻找:

  @Override public final void run() {    String oldName = Thread.currentThread().getName();    Thread.currentThread().setName(name);    try {      execute();    } finally {      Thread.currentThread().setName(oldName);    }  }

在NamedRunnable的run方法中,主要调用类execute方法,但是发现NamedRunnable中的execute方法是个抽象方法,继续从其子类AsyncCall中查看execute方法:

    @Override protected void execute() {      boolean signalledCallback = false;      try {        Response response = getResponseWithInterceptorChain();        if (retryAndFollowUpInterceptor.isCanceled()) {          signalledCallback = true;          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));        } else {          signalledCallback = true;          responseCallback.onResponse(RealCall.this, response);        }      } catch (IOException e) {        if (signalledCallback) {          // Do not signal the callback twice!          Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);        } else {          responseCallback.onFailure(RealCall.this, e);        }      } finally {        client.dispatcher().finished(this);      }    }  }

我们主要看主流程:
首先,第4行,调用了getResponseWithInterceptorChain得到了Response对象
然后,第5行,判断一下是否取消了,如果取消了则调用responseCallback.onFailure方法,而responseCallback对象就是第4步call.enqueue(Callback callback)方法的参数callback, 这样就完成当取消了网络请求回调onFailure的流程。
如果没有取消,则在第10行调用responseCallback的onResponse, 这就是我们熟悉的味道了,会把第4行得到的结果当成参数,传递到发起网络请求的地方。
这里已经在子线程中了,也就验证了之前说的回掉onFailure和onResponse方法是在子线程中。
然后,如果请求网络的过程中,进入到了catch块,也是调用onFailure方法,这里就不多说了。
最后,在finally中调用了client.dispatcher().finshed(this),我们来看看Dispatcher中的finished方法:

  void finished(AsyncCall call) {    finished(runningAsyncCalls, call, true);  }  private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {    int runningCallsCount;    Runnable idleCallback;    synchronized (this) {      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");      if (promoteCalls) promoteCalls();      runningCallsCount = runningCallsCount();      idleCallback = this.idleCallback;    }    if (runningCallsCount == 0 && idleCallback != null) {      idleCallback.run();    }  }

这里的finish方法,主要是把当前AsyncCall从正在运行的AsyncCall任务队列里移除掉。
主流程走完,我们回过头来看AsyncCall中execute的第4行,调用了getResponseWithInterceptorChain方法,这就是真正的网络请求的地方了,实现还是有些复杂的:

  Response getResponseWithInterceptorChain() throws IOException {    // Build a full stack of interceptors.    List<Interceptor> interceptors = new ArrayList<>();    interceptors.addAll(client.interceptors());    interceptors.add(retryAndFollowUpInterceptor);    interceptors.add(new BridgeInterceptor(client.cookieJar()));    interceptors.add(new CacheInterceptor(client.internalCache()));    interceptors.add(new ConnectInterceptor(client));    if (!forWebSocket) {      interceptors.addAll(client.networkInterceptors());    }    interceptors.add(new CallServerInterceptor(forWebSocket));    Interceptor.Chain chain = new RealInterceptorChain(        interceptors, null, null, null, 0, originalRequest);    return chain.proceed(originalRequest);  }

首先创建了拦截器Interceptor集合,然后把一堆拦截器加入到集合里,再创建一个RealInterceptorChain对象,它是现实了拦截器Interceptor的内部接口Chain,我们先来看看它的构造方法:

  public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,      HttpCodec httpCodec, RealConnection connection, int index, Request request) {    this.interceptors = interceptors;    this.connection = connection;    this.streamAllocation = streamAllocation;    this.httpCodec = httpCodec;    this.index = index;    this.request = request;  }

这里值得注意的就是第1个参数和第5参数,第1个参数是拦截器集合,第5个参数是当前要执行的拦截器在拦截器集合的序号,这里传入的是0,所以接下来会取interceptors的第一个元素,去执行它的方法,后续代码会看到,这里需要知道的就是传入了拦截器集合和需要执行拦截器的序号。
在创建了RealInterceptorChain以后,就调用了它的proceed方法:

  @Override public Response proceed(Request request) throws IOException {    return proceed(request, streamAllocation, httpCodec, connection);  }

这里直接调用了它的重载方法,而后面的三个参数,都是在创建RealInterceptorChain时传入的,这里三个都为null,然后我们继续看看该方法的实现:

  public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,      RealConnection connection) throws IOException {    if (index >= interceptors.size()) throw new AssertionError();    calls++;    //省略部分代码...    // Call the next interceptor in the chain.    RealInterceptorChain next = new RealInterceptorChain(        interceptors, streamAllocation, httpCodec, connection, index + 1, request);    Interceptor interceptor = interceptors.get(index);    Response response = interceptor.intercept(next);    //省略部分代码...    return response;  }

主要看第11行,又创建了一个RealInterceptorChain对象,这里第1个参数还是传入了拦截器集合,但是第5个参数是index+1了,之前是0,所以现在传入的就是1了。然后第12行,这里index 还是为0, 所以就是从拦截器中取出了第一个拦截器,最后再在第13行调用取到的拦截器的intercept方法,进行真正的网络请求,并拿到请求数据Response以后返回。
那么,拦截器集合里的第一个元素是什么呢?我们继续回到之前创建拦截器集合的地方,也就是RealCall的getResponseWithInterceptorChain方法中:

  Response getResponseWithInterceptorChain() throws IOException {    // Build a full stack of interceptors.    List<Interceptor> interceptors = new ArrayList<>();    interceptors.addAll(client.interceptors());    interceptors.add(retryAndFollowUpInterceptor);    interceptors.add(new BridgeInterceptor(client.cookieJar()));    interceptors.add(new CacheInterceptor(client.internalCache()));    interceptors.add(new ConnectInterceptor(client));    if (!forWebSocket) {      interceptors.addAll(client.networkInterceptors());    }    interceptors.add(new CallServerInterceptor(forWebSocket));    Interceptor.Chain chain = new RealInterceptorChain(        interceptors, null, null, null, 0, originalRequest);    return chain.proceed(originalRequest);  }

拦截器的第一个元素应该是第三行代码加入的,我们来看看client.interceptors()方法的实现:

  /**   * Returns an immutable list of interceptors that observe the full span of each call: from before   * the connection is established (if any) until after the response source is selected (either the   * origin server, cache, or both).   */  public List<Interceptor> interceptors() {    return interceptors;  }

其实就是直接返回了OkHttpClient中的拦截器集合,那它是在哪里赋予初值的呢?其实就在OkHttpClient的构造方法里:

OkHttpClient(Builder builder) {    this.dispatcher = builder.dispatcher;    this.proxy = builder.proxy;    this.protocols = builder.protocols;    this.connectionSpecs = builder.connectionSpecs;    this.interceptors = Util.immutableList(builder.interceptors);    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);    //省略部分代码...  }

在第6行的地方,调用了Util.immutableList方法,传入了builder的interceptors后,得到了OkHttpClient中的拦截器集合,我们来看看immutableList方法:

  /** Returns an immutable copy of {@code list}. */  public static <T> List<T> immutableList(List<T> list) {    return Collections.unmodifiableList(new ArrayList<>(list));  }

直接调用了Collections.ummodifiableList方法,这个方法的意义其实就是用于复制一个List的数据,但是复制出来的对象是只读的,不可进行add、remove等修改操作,否则就会报:java.lang.UnsupportedOperationException的错误。
所以,OkHttpClient中的拦截器集合,其实就是通过其内部类Builder中的拦截器集合构造出来的,我们看看Builder的interceptors是哪里初始化的:

  public static final class Builder {    Dispatcher dispatcher;    @Nullable Proxy proxy;    List<Protocol> protocols;    List<ConnectionSpec> connectionSpecs;    final List<Interceptor> interceptors = new ArrayList<>();    //省略部分代码...

第6行,直接创建了拦截器集合,然后我们看看Builder的有参构造方法:

    Builder(OkHttpClient okHttpClient) {      this.dispatcher = okHttpClient.dispatcher;      this.proxy = okHttpClient.proxy;      this.protocols = okHttpClient.protocols;      this.connectionSpecs = okHttpClient.connectionSpecs;      this.interceptors.addAll(okHttpClient.interceptors);      //省略部分代码...    }

第6行代码,这里把OkHttpClient的拦截器集合加入到Builder的拦截器集合中,但是我们之前在第1步创建OkHttpClient对象时讲到,先是调用了Builder无参的构造方法,初始化了参数以后,才通过Builder对象,去初始化OkHttpClient对象,所以,根本没有调用上述Builder有参构造方法,即OkHttpClient的默认拦截器集合为一个空数组。
我们再回到RealCall的getResponseWithInterceptorChain方法:

  Response getResponseWithInterceptorChain() throws IOException {    // Build a full stack of interceptors.    List<Interceptor> interceptors = new ArrayList<>();    interceptors.addAll(client.interceptors());    interceptors.add(retryAndFollowUpInterceptor);    interceptors.add(new BridgeInterceptor(client.cookieJar()));    interceptors.add(new CacheInterceptor(client.internalCache()));    interceptors.add(new ConnectInterceptor(client));    if (!forWebSocket) {      interceptors.addAll(client.networkInterceptors());    }    interceptors.add(new CallServerInterceptor(forWebSocket));    Interceptor.Chain chain = new RealInterceptorChain(        interceptors, null, null, null, 0, originalRequest);    return chain.proceed(originalRequest);  }

既然client.interceptors默认是空数组,我们来看看第5行的retryAndFollowUpInterceptor会是第一个拦截器么?
我们先说一下结论,其实retryAndFollowUpInterceptor就是第一个拦截器,然后第10行的client.networkInterceptors()的赋值流程和client.interceptors()是一致的,所以最后的值都为size为0的ArrayList。那么传入到RealInterceptorChain的拦截器集合就是加入了以下5个拦截器:
1.RetryAndFollowUpInterceptor
2.BridgeInterceptor
3.CacheInterceptor
4.ConnectInterceptor
5.CallServerInterceptor
然后通过调用这5个拦截器的intercept方法,完成各自的功能。
那我们先来看第一个拦截器RetryAndFollowUpInterceptor初始化的地方:

  RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {    final EventListener.Factory eventListenerFactory = client.eventListenerFactory();    this.client = client;    this.originalRequest = originalRequest;    this.forWebSocket = forWebSocket;    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);    // TODO(jwilson): this is unsafe publication and not threadsafe.    this.eventListener = eventListenerFactory.create(this);  }

在RealCall的构造方法里的第7行,初始化了retryAndFollowUpInterceptor,它是一个RetryAndFollowUpInterceptor对象,而RealCall的构造方法是在第3步,OkHttpClient调用newCall方法时调用的,所以也验证了retryAndFollowUpInterceptor就是RealCall中拦截器的第一个元素。
然后我们回到主流程,得到了第一个拦截器以后,会调用其intercept方法,并把一个新的RealInterceptorChain对象传递进去,我们先看看RetryAndFollowUpInterceptor中的intercept方法:

  @Override public Response intercept(Chain chain) throws IOException {    Request request = chain.request();    RealInterceptorChain realChain = (RealInterceptorChain) chain;    Call call = realChain.call();    EventListener eventListener = realChain.eventListener();    streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(request.url()),        call, eventListener, callStackTrace);    int followUpCount = 0;    Response priorResponse = null;    while (true) {      if (canceled) {        streamAllocation.release();        throw new IOException("Canceled");      }      Response response = null;      boolean releaseConnection = true;      try {        response = realChain.proceed(request, streamAllocation, null, null);        releaseConnection = false;      } catch (RouteException e) {        // The attempt to connect via a route failed. The request will not have been sent.        if (!recover(e.getLastConnectException(), false, request)) {          throw e.getLastConnectException();        }        releaseConnection = false;        continue;      } catch (IOException e) {        // An attempt to communicate with a server failed. The request may have been sent.        boolean requestSendStarted = !(e instanceof ConnectionShutdownException);        if (!recover(e, requestSendStarted, request)) throw e;        releaseConnection = false;        continue;      } finally {        // We're throwing an unchecked exception. Release any resources.        if (releaseConnection) {          streamAllocation.streamFailed(null);          streamAllocation.release();        }      }      // Attach the prior response if it exists. Such responses never have a body.      if (priorResponse != null) {        response = response.newBuilder()            .priorResponse(priorResponse.newBuilder()                    .body(null)                    .build())            .build();      }      Request followUp = followUpRequest(response);      if (followUp == null) {        if (!forWebSocket) {          streamAllocation.release();        }        return response;      }      closeQuietly(response.body());      if (++followUpCount > MAX_FOLLOW_UPS) {        streamAllocation.release();        throw new ProtocolException("Too many follow-up requests: " + followUpCount);      }      if (followUp.body() instanceof UnrepeatableRequestBody) {        streamAllocation.release();        throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());      }      if (!sameConnection(response, followUp.url())) {        streamAllocation.release();        streamAllocation = new StreamAllocation(client.connectionPool(),            createAddress(followUp.url()), call, eventListener, callStackTrace);      } else if (streamAllocation.codec() != null) {        throw new IllegalStateException("Closing the body of " + response            + " didn't close its backing stream. Bad interceptor?");      }      request = followUp;      priorResponse = response;    }  }

首先,在第7行的地方,创建了一个StreamAllocation对象。然后在第12行,写了一个while(true)的循环,其实当一次性请求成功时,while里面的代码块只会执行一次,得到Response结果以后,直接return了,所以我们先不用纠结这个while(true)。继续往下看,第21行代码处,调用了realChain.proceed方法,而这个realChain对象,就是在取出拦截器集合里第一个元素RetryAndFollowUpInterceptor对象以后,调用intercept时传递进来的参数RealInterceptorChain对象,还记得当时创建时,构造参数传递的第5个参数为index+1么?也就是这时的realChain的index=1。
这里有些难理解,总体来说就是:
1.首先,创建了一系列的拦截器
2.然后创建了一个RealInterceptorChain对象,调用了它的proceed方法,并告知取拦截器的序号
3.在proceed方法里,从拦截器集合里,取出对应序号的拦截器,然后调用拦截器的intercept方法
4.在intercept方法里,继续调用RealInterceptorChain的proceed方法
5.一直循环3-4,直到取到最后一个拦截器CallServerInterceptor,并返回网络请求的结果Response。
如图:
这里写图片描述

那我们继续看RealInterceptorChain的proceed方法,就是上述流程的第4步:
这时候取出的就是第2个拦截器BridgeInterceptor对象,然后我们看看它的intercept方法:

  @Override public Response intercept(Chain chain) throws IOException {    Request userRequest = chain.request();    Request.Builder requestBuilder = userRequest.newBuilder();    RequestBody body = userRequest.body();    if (body != null) {      MediaType contentType = body.contentType();      if (contentType != null) {        requestBuilder.header("Content-Type", contentType.toString());      }      long contentLength = body.contentLength();      if (contentLength != -1) {        requestBuilder.header("Content-Length", Long.toString(contentLength));        requestBuilder.removeHeader("Transfer-Encoding");      } else {        requestBuilder.header("Transfer-Encoding", "chunked");        requestBuilder.removeHeader("Content-Length");      }    }    if (userRequest.header("Host") == null) {      requestBuilder.header("Host", hostHeader(userRequest.url(), false));    }    if (userRequest.header("Connection") == null) {      requestBuilder.header("Connection", "Keep-Alive");    }    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing    // the transfer stream.    boolean transparentGzip = false;    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {      transparentGzip = true;      requestBuilder.header("Accept-Encoding", "gzip");    }    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());    if (!cookies.isEmpty()) {      requestBuilder.header("Cookie", cookieHeader(cookies));    }    if (userRequest.header("User-Agent") == null) {      //requestBuilder.header("User-Agent", Version.userAgent());    }    Response networkResponse = chain.proceed(requestBuilder.build());    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());    Response.Builder responseBuilder = networkResponse.newBuilder()        .request(userRequest);    if (transparentGzip        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))        && HttpHeaders.hasBody(networkResponse)) {      GzipSource responseBody = new GzipSource(networkResponse.body().source());      Headers strippedHeaders = networkResponse.headers().newBuilder()          .removeAll("Content-Encoding")          .removeAll("Content-Length")          .build();      responseBuilder.headers(strippedHeaders);      responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));    }    return responseBuilder.build();  }

可以看到,这个方法主要是处理了网络请求头的问题,包括文本类型、Host、User-Agent、Keep-Alive等配置。这里主要看47行,这里继续调用了RealInterceptorChain的peroceed方法,不过这里的方法参数Request已经是封装过Request了。
根据之前讲到的,我们很容易想到,这时候应该是取第3个拦截器CacheInterceptor,并执行它的intercept方法,我们来看看这个方法:

  @Override public Response intercept(Chain chain) throws IOException {    Response cacheCandidate = cache != null        ? cache.get(chain.request())        : null;    long now = System.currentTimeMillis();    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();    Request networkRequest = strategy.networkRequest;    Response cacheResponse = strategy.cacheResponse;    if (cache != null) {      cache.trackResponse(strategy);    }    if (cacheCandidate != null && cacheResponse == null) {      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.    }    // If we're forbidden from using the network and the cache is insufficient, fail.    if (networkRequest == null && cacheResponse == null) {      return new Response.Builder()          .request(chain.request())          .protocol(Protocol.HTTP_1_1)          .code(504)          .message("Unsatisfiable Request (only-if-cached)")          .body(Util.EMPTY_RESPONSE)          .sentRequestAtMillis(-1L)          .receivedResponseAtMillis(System.currentTimeMillis())          .build();    }    // If we don't need the network, we're done.    if (networkRequest == null) {      return cacheResponse.newBuilder()          .cacheResponse(stripBody(cacheResponse))          .build();    }    Response networkResponse = null;    try {      networkResponse = chain.proceed(networkRequest);    } finally {      // If we're crashing on I/O or otherwise, don't leak the cache body.      if (networkResponse == null && cacheCandidate != null) {        closeQuietly(cacheCandidate.body());      }    }    // If we have a cache response too, then we're doing a conditional get.    if (cacheResponse != null) {      if (networkResponse.code() == HTTP_NOT_MODIFIED) {        Response response = cacheResponse.newBuilder()            .headers(combine(cacheResponse.headers(), networkResponse.headers()))            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())            .cacheResponse(stripBody(cacheResponse))            .networkResponse(stripBody(networkResponse))            .build();        networkResponse.body().close();        // Update the cache after combining headers but before stripping the        // Content-Encoding header (as performed by initContentStream()).        cache.trackConditionalCacheHit();        cache.update(cacheResponse, response);        return response;      } else {        closeQuietly(cacheResponse.body());      }    }    Response response = networkResponse.newBuilder()        .cacheResponse(stripBody(cacheResponse))        .networkResponse(stripBody(networkResponse))        .build();    if (cache != null) {      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {        // Offer this request to the cache.        CacheRequest cacheRequest = cache.put(response);        return cacheWritingResponse(cacheRequest, response);      }      if (HttpMethod.invalidatesCache(networkRequest.method())) {        try {          cache.remove(networkRequest);        } catch (IOException ignored) {          // The cache cannot be written.        }      }    }    return response;  }

看名称就知道了,这显然是一个处理缓存相关的拦截器。我们直接看核心代码,就是第42行,这里继续调用了chain.proceed方法,通过调用下一个拦截器的intercept方法得到请求网络结果networkResponse,然后在第72行通过返回的结果,构造Response出对象,并返回。
而下一个拦截器就是ConnectInterceptor,我们来看看它的intercept方法:

  @Override public Response intercept(Chain chain) throws IOException {    RealInterceptorChain realChain = (RealInterceptorChain) chain;    Request request = realChain.request();    StreamAllocation streamAllocation = realChain.streamAllocation();    // We need the network to satisfy this request. Possibly for validating a conditional GET.    boolean doExtensiveHealthChecks = !request.method().equals("GET");    HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);    RealConnection connection = streamAllocation.connection();    return realChain.proceed(request, streamAllocation, httpCodec, connection);  }

容易看出ConnectInterceptor就是一个建立网络连接的拦截器,第9行代码处,就是得到了一个网络链接RealConnection,就像HttpUrlConnection中的new URL().openConnection()一样,然后在第11行,调用了realChain.proceed方法,并把刚才得到RealConnection对象传递进去,这里很容易推测,最后一个拦截器的作用应该就是做真正的网络请求。
下一个拦截器,也是最后一个拦截器,就是CallServerInterceptor,我们来看看它的intercept方法:

  @Override public Response intercept(Chain chain) throws IOException {    RealInterceptorChain realChain = (RealInterceptorChain) chain;    HttpCodec httpCodec = realChain.httpStream();    StreamAllocation streamAllocation = realChain.streamAllocation();    RealConnection connection = (RealConnection) realChain.connection();    Request request = realChain.request();    long sentRequestMillis = System.currentTimeMillis();    httpCodec.writeRequestHeaders(request);    Response.Builder responseBuilder = null;    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {      // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100      // Continue" response before transmitting the request body. If we don't get that, return what      // we did get (such as a 4xx response) without ever transmitting the request body.      if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {        httpCodec.flushRequest();        responseBuilder = httpCodec.readResponseHeaders(true);      }      if (responseBuilder == null) {        // Write the request body if the "Expect: 100-continue" expectation was met.        Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);        request.body().writeTo(bufferedRequestBody);        bufferedRequestBody.close();      } else if (!connection.isMultiplexed()) {        // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from        // being reused. Otherwise we're still obligated to transmit the request body to leave the        // connection in a consistent state.        streamAllocation.noNewStreams();      }    }    httpCodec.finishRequest();    if (responseBuilder == null) {      responseBuilder = httpCodec.readResponseHeaders(false);    }    Response response = responseBuilder        .request(request)        .handshake(streamAllocation.connection().handshake())        .sentRequestAtMillis(sentRequestMillis)        .receivedResponseAtMillis(System.currentTimeMillis())        .build();    int code = response.code();    if (forWebSocket && code == 101) {      // Connection is upgrading, but we need to ensure interceptors see a non-null response body.      response = response.newBuilder()          .body(Util.EMPTY_RESPONSE)          .build();    } else {      response = response.newBuilder()          .body(httpCodec.openResponseBody(response))          .build();    }    if ("close".equalsIgnoreCase(response.request().header("Connection"))        || "close".equalsIgnoreCase(response.header("Connection"))) {      streamAllocation.noNewStreams();    }    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {      throw new ProtocolException(          "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());    }    return response;  }

我们先看第9行,直接通过调用了httpCodec.writeRequestHeaders方法把请求头写入,而httpCodec其实是在ConnectInterceptor的intercept方法中创建的,它其实是个Http1Codec对象。如果是post请求并且有请求body,则会执行第23行代码去调用httpCodec.createRequestBody去构建请求body,并写入。这里为Get请求,所以不会执行这段代码。继续往下看,第35行调用了httpCodec的finishRequest方法,其实就是flush了一把,用于请求数据写入完成。然后第38行,通过httpCodec的readResponseHeaders方法得到ResponseBuilder对象,然后再在第41行,去得到Response对象,最后,在55行去调用httpCodec.openResponseBody方法,构造出最后的Response并返回。
这样就完成了所有拦截器的流程,然后就逐级返回把这个Response给到Callback的回调方法onResponse。
整个流程,可能就是拦截器的部分复杂一些,不过也是OkHttp的精髓所在,把不同的功能拆分成不同的拦截器来实现。我们总结下这5个拦截器的功能:
1.RetryAndFollowUpInterceptor:处理失败、转发等网络请求
2.BridgeInterceptor:处理请求头
3.CacheInterceptor:处理缓存相关的逻辑
4.ConnectInterceptor:构造网络连接
5.CallServerInterceptor:真正网络请求,并得到Response最后返回
我们会发现,这5个拦截器的排序也是恰到好处。
最后,一图抵千言:
这里写图片描述

总结:

这篇博客主要是对OkHttp一次简单的Get请求的源码分析,还有很多细节性的地方没有涉及到,后面会写一篇OkHttp实现细节的的博客。

欢迎交流、指正。

原创粉丝点击