Spark Streaming 实战案例(三) DStream Window操作

来源:互联网 发布:官方刷机软件 编辑:程序博客网 时间:2024/06/01 08:22

本节主要内容

  1. Window Operation
  2. 入门案例

1. Window Operation

Spark Streaming提供窗口操作(Window Operation),如下图所示:
这里写图片描述
上图中,红色实线表示窗口当前的滑动位置,虚线表示前一次窗口位置,窗口每滑动一次,落在该窗口中的RDD被一起同时处理,生成一个窗口DStream(windowed DStream),窗口操作需要设置两个参数:
(1)窗口长度(window length),即窗口的持续时间,上图中的窗口长度为3
(2)滑动间隔(sliding interval),窗口操作执行的时间间隔,上图中的滑动间隔为2
这两个参数必须是原始DStream 批处理间隔(batch interval)的整数倍(上图中的原始DStream的batch interval为1)

2. 入门案例

  1. WindowWordCount——reduceByKeyAndWindow方法使用
import org.apache.spark.{SparkContext, SparkConf}import org.apache.spark.storage.StorageLevelimport org.apache.spark.streaming._import org.apache.spark.streaming.StreamingContext._object WindowWordCount {  def main(args: Array[String]) {    //传入的参数为localhost 9999 30 10    if (args.length != 4) {      System.err.println("Usage: WindowWorldCount <hostname> <port> <windowDuration> <slideDuration>")      System.exit(1)    }    StreamingExamples.setStreamingLogLevels()    val conf = new SparkConf().setAppName("WindowWordCount").setMaster("local[4]")    val sc = new SparkContext(conf)    // 创建StreamingContext,batch interval为5秒    val ssc = new StreamingContext(sc, Seconds(5))    //Socket为数据源    val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_ONLY_SER)    val words = lines.flatMap(_.split(" "))    // windows操作,对窗口中的单词进行计数    val wordCounts = words.map(x => (x , 1)).reduceByKeyAndWindow((a:Int,b:Int) => (a + b), Seconds(args(2).toInt), Seconds(args(3).toInt))    wordCounts.print()    ssc.start()    ssc.awaitTermination()  }}

通过下列代码启动netcat server

root@sparkmaster:~# nc -lk 9999
  • 1

再运行WindowWordCount
输入下列语句

root@sparkmaster:~# nc -lk 9999Spark is a fast and general cluster computing system for Big Data. It provides
  • 1

观察执行情况:

-------------------------------------------Time: 1448778805000 ms(10秒,第一个滑动窗口时间)-------------------------------------------(provides,1)(is,1)(general,1)(Big,1)(fast,1)(cluster,1)(Data.,1)(computing,1)(Spark,1)(a,1)...-------------------------------------------Time: 1448778815000 ms(10秒后,第二个滑动窗口时间)-------------------------------------------(provides,1)(is,1)(general,1)(Big,1)(fast,1)(cluster,1)(Data.,1)(computing,1)(Spark,1)(a,1)...-------------------------------------------Time: 1448778825000 ms(10秒后,第三个滑动窗口时间)-------------------------------------------(provides,1)(is,1)(general,1)(Big,1)(fast,1)(cluster,1)(Data.,1)(computing,1)(Spark,1)(a,1)...-------------------------------------------Time: 1448778835000 ms(再经10秒后,超出window length窗口长度,不在计数范围内)--------------------------------------------------------------------------------------Time: 1448778845000 ms-------------------------------------------

同样的语句输入两次

root@sparkmaster:~# nc -lk 9999Spark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It provides

观察执行结果如下:

Time: 1448779205000 ms-------------------------------------------(provides,2)(is,2)(general,2)(Big,2)(fast,2)(cluster,2)(Data.,2)(computing,2)(Spark,2)(a,2)...

再输入一次

root@sparkmaster:~# nc -lk 9999Spark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It provides

计算结果如下:

-------------------------------------------Time: 1448779215000 ms-------------------------------------------(provides,3)(is,3)(general,3)(Big,3)(fast,3)(cluster,3)(Data.,3)(computing,3)(Spark,3)(a,3)...

再输入一次

root@sparkmaster:~# nc -lk 9999Spark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It providesSpark is a fast and general cluster computing system for Big Data. It provides

计算结果如下:

-------------------------------------------Time: 1448779225000 ms-------------------------------------------(provides,4)(is,4)(general,4)(Big,4)(fast,4)(cluster,4)(Data.,4)(computing,4)(Spark,4)(a,4)...-------------------------------------------Time: 1448779235000 ms-------------------------------------------(provides,2)(is,2)(general,2)(Big,2)(fast,2)(cluster,2)(Data.,2)(computing,2)(Spark,2)(a,2)...-------------------------------------------Time: 1448779245000 ms-------------------------------------------(provides,1)(is,1)(general,1)(Big,1)(fast,1)(cluster,1)(Data.,1)(computing,1)(Spark,1)(a,1)...-------------------------------------------Time: 1448779255000 ms--------------------------------------------------------------------------------------Time: 1448779265000 ms-------------------------------------------

2 WindowWordCount——countByWindow方法使用

import org.apache.spark.{SparkContext, SparkConf}import org.apache.spark.storage.StorageLevelimport org.apache.spark.streaming._import org.apache.spark.streaming.StreamingContext._object WindowWordCount {  def main(args: Array[String]) {    if (args.length != 4) {      System.err.println("Usage: WindowWorldCount <hostname> <port> <windowDuration> <slideDuration>")      System.exit(1)    }    StreamingExamples.setStreamingLogLevels()    val conf = new SparkConf().setAppName("WindowWordCount").setMaster("local[2]")    val sc = new SparkContext(conf)    // 创建StreamingContext    val ssc = new StreamingContext(sc, Seconds(5))    // 定义checkpoint目录为当前目录    ssc.checkpoint(".")    val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_ONLY_SER)    val words = lines.flatMap(_.split(" "))    //countByWindowcountByWindow方法计算基于滑动窗口的DStream中的元素的数量。    val countByWindow=words.countByWindow(Seconds(args(2).toInt), Seconds(args(3).toInt))    countByWindow.print()    ssc.start()    ssc.awaitTermination()  }}

启动

root@sparkmaster:~# nc -lk 9999

然后运行WindowWordCount
输入

root@sparkmaster:~# nc -lk 9999Spark is a fast and general cluster computing system for Big Data

察看运行结果:

-------------------------------------------Time: 1448780625000 ms-------------------------------------------0-------------------------------------------Time: 1448780635000 ms-------------------------------------------12-------------------------------------------Time: 1448780645000 ms-------------------------------------------12-------------------------------------------Time: 1448780655000 ms-------------------------------------------12-------------------------------------------Time: 1448780665000 ms-------------------------------------------0-------------------------------------------Time: 1448780675000 ms-------------------------------------------0

3 WindowWordCount——reduceByWindow方法使用

//reduceByWindow方法基于滑动窗口对源DStream中的元素进行聚合操作,返回包含单元素的一个新的DStream。 val reduceByWindow=words.map(x=>1).reduceByWindow(_+_,_-_Seconds(args(2).toInt), Seconds(args(3).toInt))

上面的例子其实是countByWindow的实现,可以在countByWindow源码实现中得到验证

def countByWindow(      windowDuration: Duration,      slideDuration: Duration): DStream[Long] = ssc.withScope {    this.map(_ => 1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration)  }

而reduceByWindow又是通过reduceByKeyAndWindow方法来实现的,具体代码如下

def reduceByWindow(      reduceFunc: (T, T) => T,      invReduceFunc: (T, T) => T,      windowDuration: Duration,      slideDuration: Duration    ): DStream[T] = ssc.withScope {      this.map(x => (1, x))          .reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration, 1)          .map(_._2)  }

与前面的例子中的reduceByKeyAndWindow方法不同的是这里的reduceByKeyAndWindow方法多了一个invReduceFunc参数,方法完整源码如下:

 /**   * Return a new DStream by applying incremental `reduceByKey` over a sliding window.   * The reduced value of over a new window is calculated using the old window's reduced value :   *  1. reduce the new values that entered the window (e.g., adding new counts)   *   *  2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)   *   * This is more efficient than reduceByKeyAndWindow without "inverse reduce" function.   * However, it is applicable to only "invertible reduce functions".   * Hash partitioning is used to generate the RDDs with Spark's default number of partitions.   * @param reduceFunc associative reduce function   * @param invReduceFunc inverse reduce function   * @param windowDuration width of the window; must be a multiple of this DStream's   *                       batching interval   * @param slideDuration  sliding interval of the window (i.e., the interval after which   *                       the new DStream will generate RDDs); must be a multiple of this   *                       DStream's batching interval   * @param filterFunc     Optional function to filter expired key-value pairs;   *                       only pairs that satisfy the function are retained   */  def reduceByKeyAndWindow(      reduceFunc: (V, V) => V,      invReduceFunc: (V, V) => V,      windowDuration: Duration,      slideDuration: Duration = self.slideDuration,      numPartitions: Int = ssc.sc.defaultParallelism,      filterFunc: ((K, V)) => Boolean = null    ): DStream[(K, V)] = ssc.withScope {    reduceByKeyAndWindow(      reduceFunc, invReduceFunc, windowDuration,      slideDuration, defaultPartitioner(numPartitions), filterFunc    )  }

具体来讲,下面两个方法得到的结果是一样的,只是效率不同,后面的方法方式效率更高:

//以过去5秒钟为一个输入窗口,每1秒统计一下WordCount,本方法会将过去5秒钟的每一秒钟的WordCount都进行统计//然后进行叠加,得出这个窗口中的单词统计。 这种方式被称为叠加方式,如下图左边所示val wordCounts = words.map(x => (x, 1)).reduceByKeyAndWindow(_ + _, Seconds(5s),seconds(1))

//计算t+4秒这个时刻过去5秒窗口的WordCount,可以将t+3时刻过去5秒的统计量加上[t+3,t+4]的统计量//再减去[t-2,t-1]的统计量,这种方法可以复用中间三秒的统计量,提高统计的效率。 这种方式被称为增量方式,如下图的右边所示val wordCounts = words.map(x => (x, 1)).reduceByKeyAndWindow(_ + _, _ - _, Seconds(5s),seconds(1))
  • 1

这里写图片描述

DStream支持的全部Window操作方法如下:
这里写图片描述

阅读全文
0 0
原创粉丝点击