java设计模式总结

来源:互联网 发布:如何将iphone投影到mac 编辑:程序博客网 时间:2024/06/05 17:13

java设计模式总结

设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。本章系Java之美[从菜鸟到高手演变]系列之设计模式,我们会以理论与实践相结合的方式来进行本章的学习,希望广大程序爱好者,学好设计模式,做一个优秀的软件工程师!

设计模式的分类

总体来说设计模式分为三大类:
创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:
这里写图片描述

设计模式的六大原则

开闭原则(Open Close Principle)

开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

里氏代换原则(Liskov Substitution Principle)

里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科

依赖倒转原则(Dependence Inversion Principle)

这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。

接口隔离原则(Interface Segregation Principle)

这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

迪米特法则(最少知道原则)(Demeter Principle)

为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

合成复用原则(Composite Reuse Principle)

原则是尽量使用合成/聚合的方式,而不是使用继承。

Java的23中设计模式

从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

工厂方法模式(Factory Method)

普通工厂模式

就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

factory

首先,创建二者的共同接口:

public interface Sender {      public void Send();  }  

其次,创建实现类:

public class MailSender implements Sender {      @Override      public void Send() {          System.out.println("this is mailsender!");      }  }  
public class SmsSender implements Sender {      @Override      public void Send() {          System.out.println("this is sms sender!");      }  }  

最后,建工厂类:

public class SendFactory {      public Sender produce(String type) {          if ("mail".equals(type)) {              return new MailSender();          } else if ("sms".equals(type)) {              return new SmsSender();          } else {              System.out.println("请输入正确的类型!");              return null;          }      }  }  

测试一下:

public class FactoryTest {      public static void main(String[] args) {          SendFactory factory = new SendFactory();          Sender sender = factory.produce("sms");          sender.Send();      }  }  

输出:this is sms sender!

多个工厂方法模式

多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

这里写图片描述

将上面的代码做下修改,改动下SendFactory类就行,如下:

public class SendFactory {     public Sender produceMail(){          return new MailSender();      }      public Sender produceSms(){          return new SmsSender();      }  }  

测试类如下:

public class FactoryTest {      public static void main(String[] args) {          SendFactory factory = new SendFactory();          Sender sender = factory.produceMail();          sender.Send();      }  }  

输出:this is mailsender!

静态工厂方法模式

静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

public class SendFactory {      public static Sender produceMail(){          return new MailSender();      }      public static Sender produceSms(){          return new SmsSender();      }  }  
public class FactoryTest {      public static void main(String[] args) {              Sender sender = SendFactory.produceMail();          sender.Send();      }  }  

输出:this is mailsender!

总结

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

抽象工厂模式(Abstract Factory)

工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。

这里写图片描述

请看例子:

public interface Sender {      public void Send();  }  

两个实现类:

public class MailSender implements Sender {      @Override      public void Send() {          System.out.println("this is mailsender!");      }  }  
public class SmsSender implements Sender {      @Override      public void Send() {          System.out.println("this is sms sender!");      }  }  

两个工厂类:

public class SendMailFactory implements Provider {      @Override      public Sender produce(){          return new MailSender();      }  }  
public class SendSmsFactory implements Provider{      @Override      public Sender produce() {          return new SmsSender();      }  }  再提供一个接口:
public interface Provider {      public Sender produce();  }  

测试类:

public class Test {      public static void main(String[] args) {          Provider provider = new SendMailFactory();          Sender sender = provider.produce();          sender.Send();      }  }  

总结

其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

单例模式(Singleton)

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:
1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。
首先我们写一个简单的单例类:

public class Singleton {      /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */      private static Singleton instance = null;      /* 私有构造方法,防止被实例化 */      private Singleton() {      }      /* 静态工程方法,创建实例 */      public static Singleton getInstance() {          if (instance == null) {              instance = new Singleton();          }          return instance;      }      /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */      public Object readResolve() {          return instance;      }  }  

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

public static synchronized Singleton getInstance() {          if (instance == null) {              instance = new Singleton();          }          return instance;      }  

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

public static Singleton getInstance() {          if (instance == null) {              synchronized (instance) {                  if (instance == null) {                      instance = new Singleton();                  }              }          }          return instance;      }  

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:
a>A、B线程同时进入了第一个if判断
b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();
c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。
d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。
e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。
所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

private static class SingletonFactory{                   private static Singleton instance = new Singleton();               }           public static Singleton getInstance(){               return SingletonFactory.instance;           }   

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

public class Singleton {      /* 私有构造方法,防止被实例化 */      private Singleton() {      }      /* 此处使用一个内部类来维护单例 */      private static class SingletonFactory {          private static Singleton instance = new Singleton();      }      /* 获取实例 */      public static Singleton getInstance() {          return SingletonFactory.instance;      }      /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */      public Object readResolve() {          return getInstance();      }  }  

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

public class SingletonTest {      private static SingletonTest instance = null;      private SingletonTest() {      }      private static synchronized void syncInit() {          if (instance == null) {              instance = new SingletonTest();          }      }      public static SingletonTest getInstance() {          if (instance == null) {              syncInit();          }          return instance;      }  }  

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。
补充:采用”影子实例”的办法为单例对象的属性同步更新

public class SingletonTest {      private static SingletonTest instance = null;      private Vector properties = null;      public Vector getProperties() {          return properties;      }      private SingletonTest() {      }      private static synchronized void syncInit() {          if (instance == null) {              instance = new SingletonTest();          }      }      public static SingletonTest getInstance() {          if (instance == null) {              syncInit();          }          return instance;      }      public void updateProperties() {          SingletonTest shadow = new SingletonTest();          properties = shadow.getProperties();      }  }  

总结

通过单例模式的学习告诉我们:
1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。
2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。
到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?
首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)
其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。
再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。
最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

建造者模式(Builder)

工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。我们看一下代码:
还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下:

public class Builder {      private List<Sender> list = new ArrayList<Sender>();      public void produceMailSender(int count){          for(int i=0; i<count; i++){              list.add(new MailSender());          }      }      public void produceSmsSender(int count){          for(int i=0; i<count; i++){              list.add(new SmsSender());          }      }  }  

测试类:

public class Test {      public static void main(String[] args) {          Builder builder = new Builder();          builder.produceMailSender(10);      }  }  

从这点看出,建造者模式将很多功能集成到一个类里,这个类可以创造出比较复杂的东西。所以与工程模式的区别就是:工厂模式关注的是创建单个产品,而建造者模式则关注创建符合对象,多个部分。因此,是选择工厂模式还是建造者模式,依实际情况而定。

原型模式(Prototype)

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

public class Prototype implements Cloneable {      public Object clone() throws CloneNotSupportedException {          Prototype proto = (Prototype) super.clone();          return proto;      }  }  

注意

很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:
浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。
深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。
此处,写一个深浅复制的例子:

public class Prototype implements Cloneable, Serializable {      private static final long serialVersionUID = 1L;      private String string;      private SerializableObject obj;      /* 浅复制 */      public Object clone() throws CloneNotSupportedException {          Prototype proto = (Prototype) super.clone();          return proto;      }      /* 深复制 */      public Object deepClone() throws IOException, ClassNotFoundException {          /* 写入当前对象的二进制流 */          ByteArrayOutputStream bos = new ByteArrayOutputStream();          ObjectOutputStream oos = new ObjectOutputStream(bos);          oos.writeObject(this);          /* 读出二进制流产生的新对象 */          ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());          ObjectInputStream ois = new ObjectInputStream(bis);          return ois.readObject();      }      public String getString() {          return string;      }      public void setString(String string) {          this.string = string;      }      public SerializableObject getObj() {          return obj;      }      public void setObj(SerializableObject obj) {          this.obj = obj;      }  }  class SerializableObject implements Serializable {      private static final long serialVersionUID = 1L;  }  

要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。
我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图:

模式

适配器模式(Adapter)

适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:
适配器模式

核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:

public class Source {      public void method1() {          System.out.println("this is original method!");      }  }  
public interface Targetable {      /* 与原类中的方法相同 */      public void method1();      /* 新类的方法 */      public void method2();  }  
public class Adapter extends Source implements Targetable {      @Override      public void method2() {          System.out.println("this is the targetable method!");      }  }  

Adapter类继承Source类,实现Targetable接口,下面是测试类:

public class AdapterTest {      public static void main(String[] args) {          Targetable target = new Adapter();          target.method1();          target.method2();      }  }  

输出:
this is original method!
this is the targetable method!
这样Targetable接口的实现类就具有了Source类的功能。

对象的适配器模式

基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:
这里写图片描述

只需要修改Adapter类的源码即可:

public class Wrapper implements Targetable {      private Source source;      public Wrapper(Source source){          super();          this.source = source;      }      @Override      public void method2() {          System.out.println("this is the targetable method!");      }      @Override      public void method1() {          source.method1();      }  }  

测试类:

public class AdapterTest {      public static void main(String[] args) {          Source source = new Source();          Targetable target = new Wrapper(source);          target.method1();          target.method2();      }  }  

输出与第一种一样,只是适配的方法不同而已。

接口的适配器模式

接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:
Adapter

这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:

public interface Sourceable {      public void method1();      public void method2();  }  

抽象类Wrapper2:

public abstract class Wrapper2 implements Sourceable{      public void method1(){}      public void method2(){}  }  
public class SourceSub1 extends Wrapper2 {      public void method1(){          System.out.println("the sourceable interface's first Sub1!");      }  }  
public class SourceSub2 extends Wrapper2 {      public void method2(){          System.out.println("the sourceable interface's second Sub2!");      }  }  
public class WrapperTest {      public static void main(String[] args) {          Sourceable source1 = new SourceSub1();          Sourceable source2 = new SourceSub2();          source1.method1();          source1.method2();          source2.method1();          source2.method2();      }  }  

测试输出:
the sourceable interface’s first Sub1!
the sourceable interface’s second Sub2!

总结

讲了这么多,总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

7、装饰模式(Decorator)

顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:
装饰者模式

Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

public interface Sourceable {      public void method();  }  
public class Source implements Sourceable {      @Override      public void method() {          System.out.println("the original method!");      }  }  
public class Decorator implements Sourceable {      private Sourceable source;      public Decorator(Sourceable source){          super();          this.source = source;      }      @Override      public void method() {          System.out.println("before decorator!");          source.method();          System.out.println("after decorator!");      }  }  

测试类:

public class DecoratorTest {      public static void main(String[] args) {          Sourceable source = new Source();          Sourceable obj = new Decorator(source);          obj.method();      }  }  

输出:
before decorator!
the original method!
after decorator!

总结

装饰器模式的应用场景:
1、需要扩展一个类的功能。
2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)
缺点:产生过多相似的对象,不易排错!

代理模式(Proxy)

其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:

Proxy模式

根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:

public interface Sourceable {      public void method();  }  
public class Source implements Sourceable {      @Override      public void method() {          System.out.println("the original method!");      }  }  
public class Proxy implements Sourceable {      private Source source;      public Proxy(){          super();          this.source = new Source();      }      @Override      public void method() {          before();          source.method();          atfer();      }      private void atfer() {          System.out.println("after proxy!");      }      private void before() {          System.out.println("before proxy!");      }  }  

测试类:

public class ProxyTest {      public static void main(String[] args) {          Sourceable source = new Proxy();          source.method();      }  }  

输出:
before proxy!
the original method!
after proxy!

总结

代理模式的应用场景:
如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:
1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。
2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。
使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

外观模式(Facade)

外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)

http://os94ofsac.bkt.clouddn.com/Facade.jpg

我们先看下实现类:

    public class CPU {      public void startup(){          System.out.println("cpu startup!");      }      public void shutdown(){          System.out.println("cpu shutdown!");      }  }  
    public class Memory {      public void startup(){          System.out.println("memory startup!");      }      public void shutdown(){          System.out.println("memory shutdown!");      }  }  
    public class Disk {      public void startup(){          System.out.println("disk startup!");      }      public void shutdown(){          System.out.println("disk shutdown!");      }  }  
    public class Computer {      private CPU cpu;      private Memory memory;      private Disk disk;      public Computer(){          cpu = new CPU();          memory = new Memory();          disk = new Disk();      }      public void startup(){          System.out.println("start the computer!");          cpu.startup();          memory.startup();          disk.startup();          System.out.println("start computer finished!");      }      public void shutdown(){          System.out.println("begin to close the computer!");          cpu.shutdown();          memory.shutdown();          disk.shutdown();          System.out.println("computer closed!");      }  }  
    public class User {      public static void main(String[] args) {          Computer computer = new Computer();          computer.startup();          computer.shutdown();      }  }  

输出:
start the computer!
cpu startup!
memory startup!
disk startup!
start computer finished!
begin to close the computer!
cpu shutdown!
memory shutdown!
disk shutdown!
computer closed!
如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!

桥接模式(Bridge)

桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:

http://os94ofsac.bkt.clouddn.com/Bridge.jpg

实现代码:
先定义接口:

    public interface Sourceable {          public void method();      }  
    public class SourceSub1 implements Sourceable {      @Override      public void method() {          System.out.println("this is the first sub!");      }  }  
    public class SourceSub2 implements Sourceable {      @Override      public void method() {          System.out.println("this is the second sub!");      }  }  

定义一个桥,持有Sourceable的一个实例:

    public abstract class Bridge {      private Sourceable source;      public void method(){          source.method();      }      public Sourceable getSource() {          return source;      }      public void setSource(Sourceable source) {          this.source = source;      }  }  
    public class MyBridge extends Bridge {      public void method(){          getSource().method();      }  }  

测试类:

    public class BridgeTest {      public static void main(String[] args) {          Bridge bridge = new MyBridge();          /*调用第一个对象*/          Sourceable source1 = new SourceSub1();          bridge.setSource(source1);          bridge.method();          /*调用第二个对象*/          Sourceable source2 = new SourceSub2();          bridge.setSource(source2);          bridge.method();      }  }  

输出:
this is the first sub!
this is the second sub!

这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

http://os94ofsac.bkt.clouddn.com/hexo-next-blog/java/bridge-1.jpg

组合模式(Composite)

组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:

http://os94ofsac.bkt.clouddn.com/hexo-next-blog/java/Composite.jpg

直接来看代码:

    public class TreeNode {      private String name;      private TreeNode parent;      private Vector<TreeNode> children = new Vector<TreeNode>();      public TreeNode(String name){          this.name = name;      }      public String getName() {          return name;      }      public void setName(String name) {          this.name = name;      }      public TreeNode getParent() {          return parent;      }      public void setParent(TreeNode parent) {          this.parent = parent;      }      //添加孩子节点      public void add(TreeNode node){          children.add(node);      }      //删除孩子节点      public void remove(TreeNode node){          children.remove(node);      }      //取得孩子节点      public Enumeration<TreeNode> getChildren(){          return children.elements();      }  }  
    public class Tree {      TreeNode root = null;      public Tree(String name) {          root = new TreeNode(name);      }      public static void main(String[] args) {          Tree tree = new Tree("A");          TreeNode nodeB = new TreeNode("B");          TreeNode nodeC = new TreeNode("C");          nodeB.add(nodeC);          tree.root.add(nodeB);          System.out.println("build the tree finished!");      }  }  

总结

使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

享元模式(Flyweight)

享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

http://os94ofsac.bkt.clouddn.com/hexo-next-blog/java/Flyweight.jpg

FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。

看个例子:
看下数据库连接池的代码:

    public class ConnectionPool {      private Vector<Connection> pool;      /*公有属性*/      private String url = "jdbc:mysql://localhost:3306/test";      private String username = "root";      private String password = "root";      private String driverClassName = "com.mysql.jdbc.Driver";      private int poolSize = 100;      private static ConnectionPool instance = null;      Connection conn = null;      /*构造方法,做一些初始化工作*/      private ConnectionPool() {          pool = new Vector<Connection>(poolSize);          for (int i = 0; i < poolSize; i++) {              try {                  Class.forName(driverClassName);                  conn = DriverManager.getConnection(url, username, password);                  pool.add(conn);              } catch (ClassNotFoundException e) {                  e.printStackTrace();              } catch (SQLException e) {                  e.printStackTrace();              }          }      }      /* 返回连接到连接池 */      public synchronized void release() {          pool.add(conn);      }      /* 返回连接池中的一个数据库连接 */      public synchronized Connection getConnection() {          if (pool.size() > 0) {              Connection conn = pool.get(0);              pool.remove(conn);              return conn;          } else {              return null;          }      }  }  

通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!

13、策略模式(strategy)

策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数,关系图如下:

http://os94ofsac.bkt.clouddn.com/hexo-next-blog/java/strategy.jpg

图中ICalculator提供同意的方法,
AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每个类:
首先统一接口:

Public interface ICalculator {      public int calculate(String exp);  }  

辅助类:

    public abstract class AbstractCalculator {      public int[] split(String exp,String opt){          String array[] = exp.split(opt);          int arrayInt[] = new int[2];          arrayInt[0] = Integer.parseInt(array[0]);          arrayInt[1] = Integer.parseInt(array[1]);          return arrayInt;      }  }  

三个实现类:

    public class Plus extends AbstractCalculator implements ICalculator {      @Override      public int calculate(String exp) {          int arrayInt[] = split(exp,"\\+");          return arrayInt[0]+arrayInt[1];      }  }  
    public class Minus extends AbstractCalculator implements ICalculator {      @Override      public int calculate(String exp) {          int arrayInt[] = split(exp,"-");          return arrayInt[0]-arrayInt[1];      }  }  
    public class Multiply extends AbstractCalculator implements ICalculator {      @Override      public int calculate(String exp) {          int arrayInt[] = split(exp,"\\*");          return arrayInt[0]*arrayInt[1];      }  }  

简单的测试类:

    public class StrategyTest {      public static void main(String[] args) {          String exp = "2+8";          ICalculator cal = new Plus();          int result = cal.calculate(exp);          System.out.println(result);      }  }  

输出:10

总结

策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。

模板方法模式(Template Method)

解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1…n个方法,可以是抽象的,也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用,先看个关系图:

这里写图片描述

就是在AbstractCalculator类中定义一个主方法calculate,calculate()调用spilt()等,Plus和Minus分别继承AbstractCalculator类,通过对AbstractCalculator的调用实现对子类的调用。

看下面的例子:

    public abstract class AbstractCalculator {      /*主方法,实现对本类其它方法的调用*/      public final int calculate(String exp,String opt){          int array[] = split(exp,opt);          return calculate(array[0],array[1]);      }      /*被子类重写的方法*/      abstract public int calculate(int num1,int num2);      public int[] split(String exp,String opt){          String array[] = exp.split(opt);          int arrayInt[] = new int[2];          arrayInt[0] = Integer.parseInt(array[0]);          arrayInt[1] = Integer.parseInt(array[1]);          return arrayInt;      }  }  
    public class Plus extends AbstractCalculator {      @Override      public int calculate(int num1,int num2) {          return num1 + num2;      }  }  

测试类:

    public class StrategyTest {      public static void main(String[] args) {          String exp = "8+8";          AbstractCalculator cal = new Plus();          int result = cal.calculate(exp, "\\+");          System.out.println(result);      }  }  

总结

我跟踪下这个小程序的执行过程:首先将exp和”\+”做参数,调用AbstractCalculator类里的calculate(String,String)方法,在calculate(String,String)里调用同类的split(),之后再调用calculate(int ,int)方法,从这个方法进入到子类中,执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了我们开头的思路。

观察者模式(Observer)

包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图。观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时,经常会看到RSS图标,就这的意思是,当你订阅了该文章,如果后续有更新,会及时通知你。其实,简单来讲就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。先来看看关系图:

http://os94ofsac.bkt.clouddn.com/hexo-next-blog/java/Observer.jpg

我解释下这些类的作用:MySubject类就是我们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时,Observer1和Observer2必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象,且当MySubject变化时,负责通知在列表内存在的对象。我们看实现代码:
一个Observer接口:

public interface Observer {      public void update();  }  

两个实现类:

    public class Observer1 implements Observer {      @Override      public void update() {          System.out.println("observer1 has received!");      }  }  
    public class Observer2 implements Observer {      @Override      public void update() {          System.out.println("observer2 has received!");      }  }  

Subject接口及实现类:

    public interface Subject {      /*增加观察者*/      public void add(Observer observer);      /*删除观察者*/      public void del(Observer observer);      /*通知所有的观察者*/      public void notifyObservers();      /*自身的操作*/      public void operation();  }  
public abstract class AbstractSubject implements Subject {      private Vector<Observer> vector = new Vector<Observer>();      @Override      public void add(Observer observer) {          vector.add(observer);      }      @Override      public void del(Observer observer) {          vector.remove(observer);      }      @Override      public void notifyObservers() {          Enumeration<Observer> enumo = vector.elements();          while(enumo.hasMoreElements()){              enumo.nextElement().update();          }      }  }  
public class MySubject extends AbstractSubject {      @Override      public void operation() {          System.out.println("update self!");          notifyObservers();      }  }  

测试类:

public class ObserverTest {      public static void main(String[] args) {          Subject sub = new MySubject();          sub.add(new Observer1());          sub.add(new Observer2());          sub.operation();      }  }  

输出:
update self!
observer1 has received!
observer2 has received!

这些东西,其实不难,只是有些抽象,不太容易整体理解,建议读者:根据关系图,新建项目,自己写代码(或者参考我的代码),按照总体思路走一遍,这样才能体会它的思想,理解起来容易!

原创粉丝点击