Python 中的Pandas库

来源:互联网 发布:迷你led显示屏软件 编辑:程序博客网 时间:2024/05/22 01:26

http://blog.csdn.net/jiandanjinxin/article/details/70835495



Data Analysis with Python and Pandas Tutorial Introduction

numpy是序列化的矩阵或者序列

pandas是字典形式的numpy,可给不同行列进行重新命名


Pandas 小抄


1. Reading and Writing Data


import pandas as pd#a. Reading a csv filedf=pd.read_csv('Analysis.cav')#b. Writing content of data frame to csv filedf.to_csv('werfer.csv')# c.Reading an Excel filedf=pd.read_excel('sdfsdgsd.xlsx', 'sheeet1')#d. Writing content of data frame to Excel filedf.to_excel('sddg.xlsx', sheet_name='sheet2')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
# pandas 导入导出,读取和储存# The pandas I/O API is a set of top level reader functions accessed like # pd.read_csv() that pandas object.# read_csv  # excel files# read_excel# read_hdf# read_sql# read_json# read_msgpack(experimental)# read_html# read_gbq(experimental)# read_stata# read_sas# read_clipboard# read_pickle #自带的亚索# The corresponding writer functions are object methods that are accessed like# df.to_csv# to_csv# to_excel# to_hdf# to_sql# to_json# to_msgpack# to_html# to_gbq# to_stata# to_clipboard# to_pickleimport pandas as pddata = pd.read_csv('student.csv')print(data)data.to_packle('student.pickle')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

2. Getting Preview of Dataframe

#a.Looking at top n recorddf.head(5)#b.Looking at bottom n recorddf.tail(5)#c.View columns namedf.columns
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
————————————————— ***3. Rename Columns of Data Frame***
#a. Rename method helps to rename column of data framedf2 = df.rename(columns={'old_columnname':'new_columnname'})#This method will create a new data frame with new column name.#b.To rename the column of existing data frame, set inplace=True.df.rename(columns={'old_columnname':'new_columnname'}, inplace=True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
————————————————— ***4. Selecting Columns or Rows***
#a. Accessing sub data framesdf[['column1','column2']]#b.Filtering Recordsdf[df['column1']>10]df[(df['column1']>10) & df['column2']==30]df[(df['column1']>10) | df['column2']==30]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
# pandas 数据选择import pandas as pdimport numpy as npdates = pd.date_range('20170101',periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])print(df)print(df['A'],df.A)print(df[0:3],df['20170101':'20170104'])# select by label:locprint(df.loc['20170102'])print(df.loc[:,['A','B']])print(df.loc['20170102',['A','B']])#select by position:ilocprint(df.iloc[3])print(df.iloc[3,1])print(df.iloc[1:3,1:3])print(df.iloc[[1,3,5],1:3])#mixed selection:ixprint(df.ix[:3,['A','C']])# Boolean indexingprint(df)print(df[df.A>8])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

5. Handing Missing Values

This is an inevitale part of dealing wiht data. To overcom this hurdle, use dropna or fillna function

#a. dropna: It is used to drop rows or columns having missing datadf1.dropna()#b.fillna: It is used to fill missing valuesdf2.fillna(value=5) # It replaces all missing values with 5mean = df2['column1'].mean()df2['column1'].fillna(mean) # It replaces all missing values of column1 with mean of available values
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
————-
from pandas import Series,DataFrameimport pandas as pdser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c'])serser.drop('c')ser
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
.drop() 返回的是一个新对象,元对象不会被改变。
from pandas import Series,DataFrameimport pandas as pdimport numpy as npdf = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],...                    [np.nan, np.nan, np.nan, 5]],...                   columns=list('ABCD'))df#Drop the columns where all elements are nandf.dropna(axis=1, how='all')     A    B  D0  NaN  2.0  01  3.0  4.0  12  NaN  NaN  5#Drop the columns where any of the elements is nan>>> df.dropna(axis=1, how='any')   D0  01  12  5#Drop the rows where all of the elements are nan (there is no row to drop, so df #stays the same):>>> df.dropna(axis=0, how='all')     A    B   C  D0  NaN  2.0 NaN  01  3.0  4.0 NaN  12  NaN  NaN NaN  5#Drop the rows where any of the elements are nan >>> df.dropna(axis=0, how='any')Empty DataFrameColumns: [A, B, C, D]Index: []#Keep only the rows with at least 2 non-na values:>>> df.dropna(thresh=2)     A    B   C  D0  NaN  2.0 NaN  01  3.0  4.0 NaN  1#Drop where all of the elements are nan, the default is the row, (there is no row to drop, so df #stays the same):>>> df.dropna(how='all')     A    B   C  D0  NaN  2.0 NaN  01  3.0  4.0 NaN  12  NaN  NaN NaN  5#Drop  where any of the elements are nan, default is the row >>> df.dropna( how='any')Empty DataFrameColumns: [A, B, C, D]Index: []dfnew = pd.DataFrame([[3435234, 2, 5666, 0], [3, 4, np.nan, 1],    ...: ...                    [np.nan, np.nan, np.nan, 5]],    ...: ...                   columns=list('ABCD'))dfnew.dropna()   #默认对row 进行操作,去掉Na项         A  B     C  D0  3435234  2  5666  0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
# 处理丢失数据import numpy as npimport pandas as pddates = pd.date_range('20170101',periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])print(df)df.iloc[0,1]=np.nan df.iloc[1,2]=np.nan  print(df.dropna(axis=0,how='any'))#how={'any','all'} default is 'any'print(df.dropna(axis=1,how='all'))#填入数据print(df.fillna(value=0))#打印缺失数据print(df.isnull())#打印出缺失数据,当数据比较大时print(np.any(df.isnull())==True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

6. Creating New Columns

New column is a function of existing columns

df['NewColumn1'] = df['column2'] # Create a copy of existing column2df['NewColumn2'] = df['column2'] + 10 # Add 10 to existing column2 then create a new onedf['NewColumn3'] = df['column1'] + df['column2'] # Add elements of column1 and column2 then create new column
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
import pandas as pd import numpy as nps = pd.Series([1,3,5,np.nan,55,2])print(s)dates = pd.date_range('20160101',periods=6)print(dates)df = pd.DataFrame(np.random.random(6,4),index=dates,columns=['a','b','c','d'])print(df)df1 = pd.DataFrame(np.arange(12).reshape((3,4)))print(df1)df2 = pd.DataFrame({'A':1.,    'B':pd.Timestamp('20170101'),    'C':pd.Series(1,index=list(range(4)),dtype='float32'),    'D':np.array([3]*4,dtype='int32'),    'E':pd.Categorical(["test","train,"test","train"]),        'F':'foo'})print(df2.dtypes)  print(df2.columns)print(df2.values)print(df2.describe)print(df2.T)print(df2.sort_index(axis=1,ascending=False))df2.sort_values(by='E')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
#添加空行df['F'] = np.nan print(df)df['E']=pd.Series([1,2,3,4,5,6],index=pd.date_range('20170101',periods=6))print(df)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

7. Aggregate

a. Groupby: Groupby helps to perform three operations. 
i. Splitting the data into groups 
ii. Applying a function to each group individually 
iii. Combining the result into a data structure

df.groupby('column1').sum()df.groupby(['column1','column2']).count()
  • 1
  • 2
  • 1
  • 2
b. Pivot Table: It helps to generate data structure. It has three components index, columns and values(similar to excel)
pd.pivot_table(df, values='column1',index=['column2','column3'],columns=['column4'])
  • 1
  • 1
By default, it shows the sum of values column but you can change it using argument aggfunc
pd.pivot_table(df, values='column1',index=['column2','column3'],columns=['column4'], aggfunc=len)
  • 1
  • 1
It shows count c. Cross Tab: Cross Tab computes the simple cross tabulation of two factors
pd.crosstab(df.column1, df.column2)
  • 1
  • 1
————————————————— ***8. Merging /Concatenating DataFrames*** a. Concatenating: It concatenate two or more data frames based on their columns
pd.concat([df1, df2])
  • 1
  • 1
b. Merging: We can perform left, right and inner join also.
pd.merge(df1,df2, on='column1',how='inner')pd.merge(df1,df2, on='column1',how='left')pd.merge(df1,df2, on='column1',how='right')pd.merge(df1,df2, on='column1',how='outer')
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
# pandas 合并concatimport pandas as pdimport numpy as np#concatenatingdf1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d'])print(df1)print(df2)print(df3)result = pd.concat([df1,df2,df3],axis=0)#行合并print(result)#result1 = pd.concat([df1,df2,df3],axis=1)#列合并#print(result1)result = pd.concat([df1,df2,df3],axis=0,ignore_index=True)#行合并,忽略indexprint(result)#join,['inner','outer']df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'],index=[2,3,4])print(df1)print(df2)result2 = pd.concat([df1,df2],join='outer',ignore_index=True)# 补充为naprint(result2)result22 = pd.concat([df1,df2],join='outer')# 补充为naprint(result22)result3 = pd.concat([df1,df2],join='inner',ignore_index=True) # 裁剪掉print(result3)result33 = pd.concat([df1,df2],join='inner') # 裁剪掉print(result33)#join_axesdf1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3])df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'],index=[2,3,4])res = pd.concat([df1,df2],axis=1,join_axes=[df1.index])print(res)res1 = pd.concat([df1,df2],axis=1)print(res1)#appenddf1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'])df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])df3 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d'])res11 = df1.append(df2,ignore_index=True)print(res11)res12 = df1.append([df2,df3],ignore_index=True)print(res12)s1 = pd.Series([1,2,3,4],index=['a','b','c','d'])res13=df1.append(s1,ignore_index=True)print(res13)#pandas 合并mergeimport pandas as pd#merging two df by key/keys.(may be used in database)#simple exampleleft = pd.DataFrame({'key':['K0','K1','K2','K3'],                      'A':['A0','A1','A2','A3'],                      'B':['B0','B1','B2','B3']})right = pd.DataFrame({'key':['K0','K1','K2','K3'],                      'C':['C0','C1','C2','C3'],                      'D':['D0','D1','D2','D3']})print(lef)print(right)res14 = pd.merge(left,right,on='key')print(res14)#consider two keysleft = pd.DataFrame({'key1':['K0','K0','K1','K2'],                     'key2':['K0','K1','K0','K1'],                      'A':['A0','A1','A2','A3'],                      'B':['B0','B1','B2','B3']})right = pd.DataFrame({'key1':['K0','K1','K1','K2'],                      'key2':['K0','K0','K0','K0'],                      'C':['C0','C1','C2','C3'],                      'D':['D0','D1','D2','D3']})print(left)print(right)res15 = pd.merge(left,right,on=['key1','key2'])print(res15)#how =['left','right','inner','outer']res16 = pd.merge(left,right,on=['key1','key2'],how='inner')print(res16)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103

9. Applying function to element, column or dataframe

a. Map: It iterates over each element of a series

df['column1'].map(lambda x: 10+x)  #this will add 10 to each element of column1df['column2'].map(lambda x:'AV'+x) # this will concatenate 'AV' at the beginning of each element of column2(column format is string)
  • 1
  • 2
  • 1
  • 2
b. Apply: As the name suggests, applies a function along any axis of the DataFrame
df[['column1','column2']].apply(sum) #It will returns the sum of all the values of column1 and column2
  • 1
  • 1
c. ApplyMap: This helps to apply a function to each element of dataframe
func = lambda x: x+2df.applymap(func) # it will add 2 to each element of dataframe(all columns of dataframe must be numeric type)
  • 1
  • 2
  • 1
  • 2
————————————————— ***10. Identify unique value*** Function unique helps to return unique values of a column
df['Column1'].unique()
  • 1
  • 1
————————————————— ***11. Basic Stats*** Pandas helps to understand the data using basic statistical methods. a. describe: This returns the quick stats(count, mean, std, min, first quartile, median, third quartile, max) on suitable columns
df.describe()
  • 1
  • 1
b. covariance: It returns the co-variance between suitable columns
df.cov()
  • 1
  • 1
c.correlation: It returns the co-variance between suitable columns.
df.corr()
  • 1
  • 1
——— 本文中的 Python-Pandas.ipynb格式见[CSDN下载](http://download.csdn.net/detail/jiandanjinxin/9826981)。
#https://python.freelycode.com/contribution/detail/333#https://python.freelycode.com/contribution/detail/334#http://www.datadependence.com/2016/05/scientific-python-pandas/#Python科学计算之Pandas#导入Pandas的标准方式import pandas as pd # This is the standard
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
#Pandas的数据类型#Pandas基于两种数据类型:series与dataframe。#一个series是一个一维的数据类型,其中每一个元素都有一个标签。#series类似于Numpy中元素带标签的数组。其中,标签可以是数字或者字符串。#一个dataframe是一个二维的表结构。Pandas的dataframe可以存储许多种不同的数据类型,并且每一个坐标轴都有自己的标签。#你可以把它想象成一个series的字典项。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
#将数据导入Pandas,采用[英国政府数据中关于降雨量数据](https://data.gov.uk/dataset/average-temperature-and-rainfall-england-and-wales/resource/3fea0f7b-5304-4f11-a809-159f4558e7da)# Reading a csv into Pandas,从csv文件中读取到了数据,并将他们存入了dataframe中#header关键字告诉Pandas这些数据是否有列名,在哪里。如果没有列名,你可以将其置为None。df = pd.read_csv('uk_rain_2014.csv', header=0)
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
#将你的数据准备好以进行挖掘和分析#想要快速查看前x行数据#Getting first x rowsdf.head(5)
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
 Water YearRain (mm) Oct-SepOutflow (m3/s) Oct-SepRain (mm) Dec-FebOutflow (m3/s) Dec-FebRain (mm) Jun-AugOutflow (m3/s) Jun-Aug01980/81118254082927248174221211981/82109851122577316242193621982/83115657013308567124180231983/8499342653918905141107841984/851182536421758133434313
#想要获得最后x行的数据#Getting last x rows#Pandas不是从dataframe的结尾处开始倒着输出数据,#而是按照它们在dataframe中固有的顺序输出给你。df.tail(5)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
 Water YearRain (mm) Oct-SepOutflow (m3/s) Oct-SepRain (mm) Dec-FebOutflow (m3/s) Dec-FebRain (mm) Jun-AugOutflow (m3/s) Jun-Aug282008/091139494126866903233189292009/101103473825564352441958302010/111053452126565932672885312011/121285550033976303795261322012/131090532935096151871797
df.columns
  • 1
  • 1
Index([’Water Year’, ‘Rain (mm) Oct-Sep’, ‘Outflow (m3/s) Oct-Sep’, ‘Rain (mm) Dec-Feb’, ‘Outflow (m3/s) Dec-Feb’, ‘Rain (mm) Jun-Aug’, ‘Outflow (m3/s) Jun-Aug’], dtype=’object’)
#Changing column labels.df.columns = ['water_year', 'rain_octsep', 'outflow_octsep', 'rain_decfeb', 'outflow_decfeb', 'rain_junaug', 'outflow_junaug']df.head(5)
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaug01980/81118254082927248174221211981/82109851122577316242193621982/83115657013308567124180231983/8499342653918905141107841984/851182536421758133434313
#取数据的行数,即条目数#Finding out how many rows dataset has.len(df)
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
33
#数据的一些基本的统计信息#Finding out basic statistical information on your dataset.pd.options.display.float_format = '{:,.3f}'.format#Limit output to 3 decimal places.计数,均值,标准方差df.describe()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
 rain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaugcount33.00033.00033.00033.00033.00033.000mean1,129.0005,019.182325.3647,926.545237.4852,439.758std101.900658.58869.9951,692.80066.1681,025.914min856.0003,479.000206.0004,578.000103.0001,078.00025%1,053.0004,506.000268.0006,690.000193.0001,797.00050%1,139.0005,112.000309.0007,630.000229.0002,142.00075%1,182.0005,497.000360.0008,905.000280.0002,959.000max1,387.0006,391.000484.00011,486.000379.0005,261.000
#过滤#提取一整列。可以直接使用列标签#Getting a column by labeldf['rain_octsep']
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
0 1182 1 1098 2 1156 3 993 4 1182 5 1027 6 1151 7 1210 8 976 9 1130 10 1022 11 1151 12 1130 13 1162 14 1110 15 856 16 1047 17 1169 18 1268 19 1204 20 1239 21 1185 22 1021 23 1165 24 1095 25 1046 26 1387 27 1225 28 1139 29 1103 30 1053 31 1285 32 1090 Name: rain_octsep, dtype: int64
#不使用空格和横线等可以让我们以访问类属性相同的方法来访问列,即使用点运算符#Getting a column by label using.df.rain_octsep
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
0 1182 1 1098 2 1156 3 993 4 1182 5 1027 6 1151 7 1210 8 976 9 1130 10 1022 11 1151 12 1130 13 1162 14 1110 15 856 16 1047 17 1169 18 1268 19 1204 20 1239 21 1185 22 1021 23 1165 24 1095 25 1046 26 1387 27 1225 28 1139 29 1103 30 1053 31 1285 32 1090 Name: rain_octsep, dtype: int64
#boolean masking#Creating a series of booleans based on a conditionaldf.rain_octsep <1000 df['rain_octsep'] <1000
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
0 False 1 False 2 False 3 True 4 False 5 False 6 False 7 False 8 True 9 False 10 False 11 False 12 False 13 False 14 False 15 True 16 False 17 False 18 False 19 False 20 False 21 False 22 False 23 False 24 False 25 False 26 False 27 False 28 False 29 False 30 False 31 False 32 False Name: rain_octsep, dtype: bool
#使用多条条件表达式来进行过滤#Filtering by multiple conditionals#将返回rain_octsep小于1000并且outflow_octsep小于4000的那些条目。df[(df.rain_octsep <1000) & (df.outflow_octsep <4000)]# Can't use the keyword 'and'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaug151995/96856347924555151721439
#数据中有字符串,也可以使用字符串方法来过滤数据。#必须使用.str.[string method],你不能直接在字符串上直接调用字符串方法。#Filtering by string methodsdf[df.water_year.str.startswith('199')] #这一语句返回1990年代的所有条目
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaug101990/911022441830571202161923111991/921151450624654932802118121992/931130524630887512192551131993/9411625583422101091931638141994/9511105370484114861031231151995/96856347924555151721439161996/971047401925857702562102171997/981169495334177472853206181998/991268582436087712252240191999/0012045665417100211972166
#索引#如果行有数字索引,可以使用iloc引用他们#Getting a row via a numerical index#iloc仅仅作用于数字索引。它将会返回该行的一个series。df.iloc[30]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
water_year 2010/11 rain_octsep 1053 outflow_octsep 4521 rain_decfeb 265 outflow_decfeb 6593 rain_junaug 267 outflow_junaug 2885 Name: 30, dtype: object
#可能在数据集里有年份的列,或者年代的列#Setting a new index from an existing columndf = df.set_index(['water_year'])df.head(5)
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
 rain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaugwater_year      1980/8111825408292724817422121981/8210985112257731624219361982/8311565701330856712418021983/849934265391890514110781984/851182536421758133434313
#在上面这个例子中,我们把我们的索引值全部设置为了字符串。这意味着我们不可以使用iloc索引这些列了。#这种情况该如何?我们使用loc。#Getting a row via a label-based indexdf.loc['2000/01']  #这里,loc和iloc一样会返回你所索引的行数据的一个series。#唯一的不同是此时你使用的是字符串标签进行引用,而不是数字标签。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
rain_octsep 1239 outflow_octsep 6092 rain_decfeb 328 outflow_decfeb 9347 rain_junaug 236 outflow_junaug 2142 Name: 2000/01, dtype: int64
#如果loc是字符串标签的索引方法,iloc是数字标签的索引方法,那什么是ix呢?#事实上,ix是一个字符串标签的索引方法,但是它同样支持数字标签索引作为它的备选。#Getting a row via a label-based or numerical indexdf.ix['1999/00'] # Label based with numerical index fallback * Not recommend#正如loc和iloc,上述代码将返回一个series包含你所索引的行的数据
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
rain_octsep 1204 outflow_octsep 5665 rain_decfeb 417 outflow_decfeb 10021 rain_junaug 197 outflow_junaug 2166 Name: 1999/00, dtype: int64
#既然ix可以完成loc和iloc二者的工作,为什么还需要它们呢?#最主要的原因是ix有一些轻微的不可预测性。还记得我说数字标签索引是ix的备选吗?#数字标签可能会让ix做出一些奇怪的事情,例如将一个数字解释成一个位置。#而loc和iloc则为你带来了安全的、可预测的、内心的宁静。#然而必须指出的是,ix要比loc和iloc更快。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
#调用sort_index来对dataframe实现排序#inplace=True to apple the sorting in place#置了关键字参数’ascending’为False。这样,我的数据会以降序排列df.sort_index(ascending=False).head(5)
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
 rain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaugwater_year      2012/1310905329350961518717972011/1212855500339763037952612010/1110534521265659326728852009/1011034738255643524419582008/091139494126866903233189
#当你为一列数据设置了一个索引时,它们将不再是数据本身了。#如果你想把索引设置为原始数据的形式,#你可以使用和set_index相反的操作——reset_index。#Returning an index to data#这将返回数据原始的索引形式。df = df.reset_index('water_year')df.head(5)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaug01980/81118254082927248174221211981/82109851122577316242193621982/83115657013308567124180231983/8499342653918905141107841984/851182536421758133434313
#对数据集应用函数#Applying a function to a columndef base_year(year):    base_year = year[:4]    base_year = pd.to_datetime(base_year).year    return base_yeardf['year'] = df.water_year.apply(base_year)df.head(5)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaugyear01980/811182540829272481742212198011981/821098511225773162421936198121982/831156570133085671241802198231983/84993426539189051411078198341984/8511825364217581334343131984
#使用apply的方法,即如何对一列应用一个函数。#如果你想对整个数据集应用某个函数,你可以使用dataset.applymap()。
  • 1
  • 2
  • 1
  • 2
#操作一个数据集结构#另一件经常会对dataframe所做的操作是为了让它们呈现出一种更便于使用的形式而对它们进行的重构。#Manipulating structure (groupby,unstack,pivot)#Groupbydf.groupby(df.year // 10*10).max()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaugyearyear        19801989/9012105701470105203434313198919901999/0012685824484114862853206199920002009/1013876391437109263575168200920102012/1312855500350961537952612012
#对多行进行分组操作#Grouping by multiple columnsdecade_rain = df.groupby([df.year // 10*10,                         df.rain_octsep // 1000*1000])[['outflow_octsep',                                                       'outflow_decfeb','outflow_junaug']].mean()decade_rain
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  outflow_octsepoutflow_decfeboutflow_junaugyearrain_octsep   198004,297.5007,685.0001,259.00010005,289.6257,933.0002,572.250199003,479.0005,515.0001,439.00010005,064.8898,363.1112,130.556200010005,030.8007,812.1002,685.900201010005,116.6677,946.0003,314.333
#unstack操作的功能是将某一列前置成为列标签。#Unstackingdecade_rain.unstack(0)#它将标识‘year’索引的第0列推起来,变为了列标签。
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
 outflow_octsepoutflow_decfeboutflow_junaugyear198019902000201019801990200020101980199020002010rain_octsep            04,297.5003,479.000nannan7,685.0005,515.000nannan1,259.0001,439.000nannan10005,289.6255,064.8895,030.8005,116.6677,933.0008,363.1117,812.1007,946.0002,572.2502,130.5562,685.9003,314.333
#再附加一个unstack操作。这次我们对’rain_octsep’索引的第1列操作:#More unstackingdecade_rain.unstack(1)
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
 outflow_octsepoutflow_decfeboutflow_junaugrain_octsep010000100001000year      19804,297.5005,289.6257,685.0007,933.0001,259.0002,572.25019903,479.0005,064.8895,515.0008,363.1111,439.0002,130.5562000nan5,030.800nan7,812.100nan2,685.9002010nan5,116.667nan7,946.000nan3,314.333
#创造一个新的dataframe#Create a new dataframe containing entries which has rain_octsep values of#greater than 1250high_rain = df[df.rain_octsep > 1250]high_rain
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
 water_yearrain_octsepoutflow_octseprain_decfeboutflow_decfebrain_junaugoutflow_junaugyear181998/9912685824360877122522401998262006/07138763914371092635751682006312011/1212855500339763037952612011
#上述代码为我们创建了如下的dataframe,我们将对它进行pivot操作#ivot实际上是在本文中我们已经见过的操作的组合。#首先,它设置了一个新的索引(set_index()),然后它对这个索引排序(sort_index()),最后它会进行unstack操作。#组合起来就是一个pivot操作。看看你能不能想想会发生什么:#Pivoting#does set_index,sort_index and unstack in a rowhigh_rain.pivot('year', 'rain_octsep')[['outflow_octsep',                                       'outflow_decfeb','outflow_junaug']].fillna('')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
 outflow_octsepoutflow_decfeboutflow_junaugrain_octsep126812851387126812851387126812851387year         19985,824.000  8,771.000  2,240.000  2006  6,391.000  10,926.000  5,168.0002011 5,500.000  7,630.000  5,261.000 
#合并数据集#有时候你有两个单独的数据集,它们直接互相关联,而你想要比较它们的差异或者合并它们#Merging two datasets togetherrain_jpn = pd.read_csv('jpn_rain.csv')rain_jpn.column = ['year', 'jpn_rainfall']uk_jpn_rain = df.merge(rain_jpn, on = 'year')uk_jpn_rain.head(5)#可以看到,两个数据集在年份这一类上已经合并了。rain_jpn数据集仅仅包含年份以及降雨量。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
#采用Pandas快速绘制图表#Using pandas to quickly plot graphs%matplotlib inlinehigh_rain.plot(x='year', y='rain_octsep')
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4
<matplotlib.axes._subplots.AxesSubplot at 0x7f1214a5d748>

这里写图片描述

#存储你的数据集#Saving your data to a csvdf.to_csv('high_rain.csv')
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3
# pandas plotimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt #plot data# Seriesdata = pd.Series(np.random.randn(1000),index=np.arange(1000))data = data.cumsum()data.plot()plt.show()plt.plot(x= , y = )#DataFramedata = pd.DataFrame(np.random.randn(1000,4),                 index=np.arange(1000),                 columns=list("ABCD"))data =data.cumsum()print(data.head())data.plot()plt.show()#plot methods:#'bar','hist','box','area','scatter','hexbin','pie'data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1')data.plot.scatter(x='A',y='C',color='DarkGreen',lable='Class2',ax=ax)plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

References


Python科学计算之Pandas(上)

Python科学计算之Pandas(下)

An Introduction to Scientific Python – Pandas

CheatSheet: Data Exploration using Pandas in Python

机器学习入门必备的13张小抄

numpy教程 pandas教程 Python数据科学计算简介

原创粉丝点击