gpio子系统和pinctrl子系统(二)

来源:互联网 发布:国外健身社交软件 编辑:程序博客网 时间:2024/05/17 01:37

转自http://blog.rongpmcu.com/gpiozi-xi-tong-he-pinctrlzi-xi-tong-zhong/

pinctrl子系统核心实现分析

pinctrl子系统的内容在drivers/pinctrl文件夹下,主要文件有(建议先看看pinctrl内核文档Documentation/pinctrl.txt): 
core.c 
devicetree.c 
pinconf.c 
pinmux.c 
pinctrl-xxx.c

core.c为pinctrl的核心代码,实现了pinctrl框架,pinmux.c和pinconf.c基于core实现了对pinmux和pinconf的支持,pinctrl-xxx.c为厂商相关的pinctrl实现(又是苦逼的bsp工程师^_^),当然有些厂商还未采用pinctrl机制,因此就没有对应的实现。最后说一句,pinctrl的实现不许用我们在驱动里调用任何它提供的api,所有的pinctrl动作都是在通用内核代码里完成了,对于驱动工程师是透明的。驱动工程师只需要通过设备树文件就能掌控整个系统的pin管理了,后面分析的过程会证实这一点。

pinctrl在代码层级只与bsp工程师有关,他们需要调用pinctrl api pinctrl_register注册。先引用一张网上截图: 
pinctrl子系统框架对于驱动工程师,只需要通过设备树文件就可以起到配置整个系统pin的目的。有几个概念先理一下,功能和组,功能就是指uart、i2c、spi等这些,组是pin的集合,我们都知道现在的soc的pin中,经常会遇到一个功能可以由不同的pin集合(即组)配置,当然同一时间只能选一个pin集合,因此,当我们要用某个功能的时候,需要告诉它func以及哪一组。下面开始分析pinctrl_register

struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,                      struct device *dev, void *driver_data){    struct pinctrl_dev *pctldev;    int ret;    if (!pctldesc)        return NULL;    if (!pctldesc->name)        return NULL;    //一般只有pinctrl chip driver需要调用pinctrl_register,pctldev就是软件上pinctrl的抽象    pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);    if (pctldev == NULL) {        dev_err(dev, "failed to alloc struct pinctrl_dev\n");        return NULL;    }    /* Initialize pin control device struct */    //初始化一些成员,后面会遇到它们的    pctldev->owner = pctldesc->owner;    pctldev->desc = pctldesc;    pctldev->driver_data = driver_data;    //pin_desc_tree用于存放所有的pin信息,由后面即将分析的pinctrl_register_pins来填充    //所有pin信息来源于输入参数pctldesc,也就是说每个pinctrl chip driver的实现者需要告诉pinctrl    //子系统该pinctrl chip所有的pin信息    INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);    //这个由gpio子系统填充信息,还记得of_gpiochip_add_pin_range吧^_^最后总结的时候再结合gpio子系统一起看看这部分    INIT_LIST_HEAD(&pctldev->gpio_ranges);    pctldev->dev = dev;    mutex_init(&pctldev->mutex);    /* check core ops for sanity */    //pinctrl_ops是pinctrl chip driver必须要实现的一组回调集合,后面在用到它里面的api时再详细讲解    if (pinctrl_check_ops(pctldev)) {        dev_err(dev, "pinctrl ops lacks necessary functions\n");        goto out_err;    }    /* If we're implementing pinmuxing, check the ops for sanity */    //如果提供了pinmux ops,检查下是否合法    if (pctldesc->pmxops) {        if (pinmux_check_ops(pctldev))            goto out_err;    }    /* If we're implementing pinconfig, check the ops for sanity */    //如果提供了pinconf ops,检查下是否合法    if (pctldesc->confops) {        if (pinconf_check_ops(pctldev))            goto out_err;    }    /* Register all the pins */    dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);    //第一个核心操作,后面详细分析    ---------> 1    ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);    if (ret) {        dev_err(dev, "error during pin registration\n");        pinctrl_free_pindescs(pctldev, pctldesc->pins,                      pctldesc->npins);        goto out_err;    }    mutex_lock(&pinctrldev_list_mutex);    //将pctldev加入到全局链表    list_add_tail(&pctldev->node, &pinctrldev_list);    mutex_unlock(&pinctrldev_list_mutex);    //这是第二个核心操作,往往pinctrl设备本身也需要做一些配置,这个函数就是用于处理这个功能---------> 2    pctldev->p = pinctrl_get(pctldev->dev);    if (!IS_ERR(pctldev->p)) {        //如果pinctrl设备提供了default状态,设置为default状态        pctldev->hog_default =            pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);        if (IS_ERR(pctldev->hog_default)) {            dev_dbg(dev, "failed to lookup the default state\n");        } else {            //设置为default状态            if (pinctrl_select_state(pctldev->p,                        pctldev->hog_default))                dev_err(dev,                    "failed to select default state\n");        }        //如果pinctrl设备提供了sleep状态,获取它,以后再用        pctldev->hog_sleep =            pinctrl_lookup_state(pctldev->p,                            PINCTRL_STATE_SLEEP);        if (IS_ERR(pctldev->hog_sleep))            dev_dbg(dev, "failed to lookup the sleep state\n");    }    //和调试相关,先忽略吧    pinctrl_init_device_debugfs(pctldev);    return pctldev;out_err:      mutex_destroy(&pctldev->mutex);    kfree(pctldev);    return NULL;}

总结一下,pinctrl_register主要做了以下工作: 
1. 分配pctldev数据结构,并添加到全局链表pinctrldev_list中 
2. 填充pctldev,根据pctldesc里的pin信息注册所有的pin信息到pctldev里的pin_desc_tree管理起来, 
3. 如果该pinctrl对应的设备树里有描述它自己的pin配置信息,那么解析它,并设置为default状态。这一部分是任何一个用到pinctrl设备都会进行的动作(解析、设置状态) 
4. 初始化调试相关的东西

下面先看看pinctrl_register_pins的过程:

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,                   struct pinctrl_pin_desc const *pins,                 unsigned num_descs){    unsigned i;    int ret = 0;    for (i = 0; i < num_descs; i++) {        //遍历传入的所有pin的数据结构,一个个处理它们        //pinctrl driver会传入所有的pin管脚及对应的名称        ret = pinctrl_register_one_pin(pctldev,                           pins[i].number, pins[i].name);        if (ret)            return ret;    }    return 0;}static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,                      unsigned number, const char *name){    struct pin_desc *pindesc;    //查看是否已经存在了    pindesc = pin_desc_get(pctldev, number);    if (pindesc != NULL) {        pr_err("pin %d already registered on %s\n", number,               pctldev->desc->name);        return -EINVAL;    }    //分配一个pinctrl子系统用于管理pin的数据结构    pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);    if (pindesc == NULL) {        dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");        return -ENOMEM;    }    /* Set owner */    //指定该pin的拥有者    pindesc->pctldev = pctldev;    /* Copy basic pin info */    if (name) {        //如果指定了名字,那么好吧,就用你了        pindesc->name = name;    } else {        //如果没有指定名字,用默认的格式组合一个        pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);        if (pindesc->name == NULL) {            kfree(pindesc);            return -ENOMEM;        }        pindesc->dynamic_name = true;    }    //将该pin添加到pctldev里管理起来    radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);    pr_debug("registered pin %d (%s) on %s\n",         number, pindesc->name, pctldev->desc->name);    return 0;}

下面开始分析第二个核心部分pinctrl_get,注意,这部分是任何一个用到pinctrl设备都会进行的动作(解析、设置状态),所以还必须弄清楚它,它主要的作用就是通过解析该设备的pinctrl信息生成一个pinctrl数据结构,用于管理该设备的pin信息,如有哪些状态、每个状态有哪些设置(设置包括pinmux和pinconf两种,有些设备只用需要pinmux,有些需要pinmux和pinconf)

struct pinctrl *pinctrl_get(struct device *dev)  {    struct pinctrl *p;    if (WARN_ON(!dev))        return ERR_PTR(-EINVAL);    /*     * See if somebody else (such as the device core) has already     * obtained a handle to the pinctrl for this device. In that case,     * return another pointer to it.     */    //如果已经有其他模块get了,那么pinctrl肯定已经创建好了,直接返回吧    p = find_pinctrl(dev);    if (p != NULL) {        dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");        kref_get(&p->users);        return p;    }    //否则,创建一个pinctrl用于管理该设备本身的pin信息    return create_pinctrl(dev);}

继续看解析的过程,通过看懂这部分,我们应该就很清楚设备树里需要怎么配置,怎么对整个系统的pin配置起作用的

static struct pinctrl *create_pinctrl(struct device *dev)  {    struct pinctrl *p;    const char *devname;    struct pinctrl_maps *maps_node;    int i;    struct pinctrl_map const *map;    int ret;    /*     * create the state cookie holder struct pinctrl for each     * mapping, this is what consumers will get when requesting     * a pin control handle with pinctrl_get()     */    p = kzalloc(sizeof(*p), GFP_KERNEL);    if (p == NULL) {        dev_err(dev, "failed to alloc struct pinctrl\n");        return ERR_PTR(-ENOMEM);    }    p->dev = dev;    //每个需要管理的设备都会有对应的pinctrl,每个设备也会有多个状态,如default、sleep等等(内核    //默认定义了一些,自己也可以随意定义),每个状态又有可能有多种设置。这个需要自己慢慢理解^_^    //这里的states成员就是用于存放所有的状态的    INIT_LIST_HEAD(&p->states);    //这里的dt_maps就是用于存放所有的设置的    INIT_LIST_HEAD(&p->dt_maps);    //又是一个复杂的函数,后面分析,它主要用于解析设备树里的信息,生成该设备对应的maps(设置)    ret = pinctrl_dt_to_map(p);    if (ret < 0) {        kfree(p);        return ERR_PTR(ret);    }    devname = dev_name(dev);    mutex_lock(&pinctrl_maps_mutex);    /* Iterate over the pin control maps to locate the right ones */    //遍历所有的的设置,这里遍历的是全局的maps链表,因为它要用到    //pinctrl_map结构,而p->dt_maps里的不是该类型    for_each_maps(maps_node, i, map) {        /* Map must be for this device */        //检查是否属于俺的设置        if (strcmp(map->dev_name, devname))            continue;        //将该设置加入到pinctrl中,也许有人会奇怪,前面的dt_maps不是已经包含了该设备的所有设置了么,        //其实这里会对每个设置做进一步处理,然后放入到p中,后面分析        ret = add_setting(p, map);        /*         * At this point the adding of a setting may:         *         * - Defer, if the pinctrl device is not yet available         * - Fail, if the pinctrl device is not yet available,         *   AND the setting is a hog. We cannot defer that, since         *   the hog will kick in immediately after the device         *   is registered.         *         * If the error returned was not -EPROBE_DEFER then we         * accumulate the errors to see if we end up with         * an -EPROBE_DEFER later, as that is the worst case.         */        if (ret == -EPROBE_DEFER) {            pinctrl_free(p, false);            mutex_unlock(&pinctrl_maps_mutex);            return ERR_PTR(ret);        }    }    mutex_unlock(&pinctrl_maps_mutex);    if (ret < 0) {        /* If some other error than deferral occured, return here */        pinctrl_free(p, false);        return ERR_PTR(ret);    }    kref_init(&p->users);    /* Add the pinctrl handle to the global list */    mutex_lock(&pinctrl_list_mutex);    //将每个设备用于控制pin的结构也放到一个全局链表中    list_add_tail(&p->node, &pinctrl_list);    mutex_unlock(&pinctrl_list_mutex);    return p;}

先总结下create_pinctrl: 
1. 创建一个pinctrl,将它加入到全局的pinctrl链表 
2. 解析该设备的说有设备树信息,将解析的状态挂到states里,解析的设置挂到dt_maps(当然,设置同时也挂到全局的maps里去了)

实在不想贴代码了,不过不贴又不好解释清楚^_^ 继续上pinctrl_dt_to_map吧,它就是实现了上面总结的第二点:

int pinctrl_dt_to_map(struct pinctrl *p)  {    struct device_node *np = p->dev->of_node;    int state, ret;    char *propname;    struct property *prop;    const char *statename;    const __be32 *list;    int size, config;    phandle phandle;    struct device_node *np_config;    /* CONFIG_OF enabled, p->dev not instantiated from DT */    if (!np) {        if (of_have_populated_dt())            dev_dbg(p->dev,                "no of_node; not parsing pinctrl DT\n");        return 0;    }    /* We may store pointers to property names within the node */    of_node_get(np);    /* For each defined state ID */    for (state = 0; ; state++) {        /* Retrieve the pinctrl-* property */        //pinctrl子系统规定了几个属性,如pinctrl-n,用于指定一个状态对应的设置,从0开始                propname = kasprintf(GFP_KERNEL, "pinctrl-%d", state);        //查找pinctrl-n属性        prop = of_find_property(np, propname, &size);        kfree(propname);        if (!prop)            break;        //value对应的就是该状态对应的设置(可能有多个),后面会处理它        list = prop->value;        size /= sizeof(*list);        /* Determine whether pinctrl-names property names the state */        //读pinctrl-names属性,也属于pinctrl子系统规定的属性,用于指定每个状态的名字,一一对应的        ret = of_property_read_string_index(np, "pinctrl-names",                            state, &statename);        /*         * If not, statename is just the integer state ID. But rather         * than dynamically allocate it and have to free it later,         * just point part way into the property name for the string.         */        if (ret < 0) {            /* strlen("pinctrl-") == 8 */            //如果美誉pinctrl-names属性,那么状态名就是index            statename = prop->name + 8;        }        /* For every referenced pin configuration node in it */        //一个一个处理设置        for (config = 0; config < size; config++) {            //第一个成员规定为配置节点(属于pinctrl的子节点)的引用,因此通过它可以找到该配置节点            phandle = be32_to_cpup(list++);            /* Look up the pin configuration node */            np_config = of_find_node_by_phandle(phandle);            if (!np_config) {                dev_err(p->dev,                    "prop %s index %i invalid phandle\n",                    prop->name, config);                ret = -EINVAL;                goto err;            }            /* Parse the node */            //找到对应的配置节点了,那么就解析那个配置节点到该设备的这个状态的这个设置中吧,后面继续贴 哎            ret = dt_to_map_one_config(p, statename, np_config);            of_node_put(np_config);            if (ret < 0)                goto err;        }        /* No entries in DT? Generate a dummy state table entry */        if (!size) {            ret = dt_remember_dummy_state(p, statename);            if (ret < 0)                goto err;        }    }    return 0;err:      pinctrl_dt_free_maps(p);    return ret;}

继续看dt_to_map_one_config

static int dt_to_map_one_config(struct pinctrl *p, const char *statename,                  struct device_node *np_config){    struct device_node *np_pctldev;    struct pinctrl_dev *pctldev;    const struct pinctrl_ops *ops;    int ret;    struct pinctrl_map *map;    unsigned num_maps;    /* Find the pin controller containing np_config */    np_pctldev = of_node_get(np_config);    for (;;) {        //找该节点的父节点,就是pinctrl设备啦,我们得通过它获取pctldev,毕竟只有它才有啊        np_pctldev = of_get_next_parent(np_pctldev);        if (!np_pctldev || of_node_is_root(np_pctldev)) {            dev_info(p->dev, "could not find pctldev for node %s, deferring probe\n",                np_config->full_name);            of_node_put(np_pctldev);            /* OK let's just assume this will appear later then */            return -EPROBE_DEFER;        }        pctldev = get_pinctrl_dev_from_of_node(np_pctldev);        if (pctldev)//拿到就跳出            break;        /* Do not defer probing of hogs (circular loop) */        if (np_pctldev == p->dev->of_node) {            of_node_put(np_pctldev);            return -ENODEV;        }    }    of_node_put(np_pctldev);    /*     * Call pinctrl driver to parse device tree node, and     * generate mapping table entries     */    ops = pctldev->desc->pctlops;    //这里就用到了pinctrl_register注册时pctlops里的dt_node_to_map回调函数了    if (!ops->dt_node_to_map) {        dev_err(p->dev, "pctldev %s doesn't support DT\n",            dev_name(pctldev->dev));        return -ENODEV;    }    //调用它,靠它来解析出这个配置节点,毕竟格式只有对应的pinctrl driver最清楚    ret = ops->dt_node_to_map(pctldev, np_config, &map, &num_maps);    if (ret < 0)        return ret;    /* Stash the mapping table chunk away for later use */    //将解析出来的设置添加到pctldev的dt_maps中,也会加到全局的maps中啦,这里就不再深入分析了,自己都觉得太啰嗦了    return dt_remember_or_free_map(p, statename, pctldev, map, num_maps);}

继续看add_setting:

static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)  {    struct pinctrl_state *state;    struct pinctrl_setting *setting;    int ret;    //前面只是解析出了所有的设置,这里就将所有的设置按状态归类起来,如果状态还没创建,就创建一个    state = find_state(p, map->name);    if (!state)        state = create_state(p, map->name);    if (IS_ERR(state))        return PTR_ERR(state);    if (map->type == PIN_MAP_TYPE_DUMMY_STATE)        return 0;    //分配一个设置数据结构    setting = kzalloc(sizeof(*setting), GFP_KERNEL);    if (setting == NULL) {        dev_err(p->dev,            "failed to alloc struct pinctrl_setting\n");        return -ENOMEM;    }    //设置的类型    setting->type = map->type;    //设置所属的pctldev    setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);    if (setting->pctldev == NULL) {        kfree(setting);        /* Do not defer probing of hogs (circular loop) */        if (!strcmp(map->ctrl_dev_name, map->dev_name))            return -ENODEV;        /*         * OK let us guess that the driver is not there yet, and         * let's defer obtaining this pinctrl handle to later...         */        dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",            map->ctrl_dev_name);        return -EPROBE_DEFER;    }    //设置名字    setting->dev_name = map->dev_name;    switch (map->type) {//根据设置的类型处理设置,因为设置可以表示mux功能,也可以表示conf功能    case PIN_MAP_TYPE_MUX_GROUP://如果是mux功能的设置,调用mux模块处理        ret = pinmux_map_to_setting(map, setting);        break;    case PIN_MAP_TYPE_CONFIGS_PIN:    case PIN_MAP_TYPE_CONFIGS_GROUP://如果是mux功能的设置,调用conf模块处理        ret = pinconf_map_to_setting(map, setting);        break;    default:        ret = -EINVAL;        break;    }    if (ret < 0) {        kfree(setting);        return ret;    }    //将设置放入状态链表归类    list_add_tail(&setting->node, &state->settings);    return 0;}

下面分别分析pinmux_map_to_settingpinconf_map_to_setting,先pinmux_map_to_setting,它是和pinmux相关,对应pinmux.c文件,里面也会用到pinmux_ops

int pinmux_map_to_setting(struct pinctrl_map const *map,                struct pinctrl_setting *setting){    struct pinctrl_dev *pctldev = setting->pctldev;    const struct pinmux_ops *pmxops = pctldev->desc->pmxops;    char const * const *groups;    unsigned num_groups;    int ret;    const char *group;    int i;    //如果在register的时候没有指定pinmux_ops,那么该函数什么都不做,出错返回    if (!pmxops) {        dev_err(pctldev->dev, "does not support mux function\n");        return -EINVAL;    }    //现在就是pinmux_ops作用的时候啦!里面会以从0开始的索引不停的调用    //pinmux_ops里的get_function_name来获取对应的名字,然后和前面解析设备树过程解析出来的名字做匹配    //直到找到或到末尾,返回该索引。这个索引与功能之间的关系由pinctrl bsp实现者负责    ret = pinmux_func_name_to_selector(pctldev, map->data.mux.function);    if (ret < 0) {        dev_err(pctldev->dev, "invalid function %s in map table\n",            map->data.mux.function);        return ret;    }    //保存该索引    setting->data.mux.func = ret;    //调用pmxops的get_function_groups获取该索引对应的组(可能存在多个,前面已经说过,一个功能可以由多个组实现,同一时间只能选一个组)    ret = pmxops->get_function_groups(pctldev, setting->data.mux.func,                      &groups, &num_groups);    if (ret < 0) {        dev_err(pctldev->dev, "can't query groups for function %s\n",            map->data.mux.function);        return ret;    }    if (!num_groups) {        dev_err(pctldev->dev,            "function %s can't be selected on any group\n",            map->data.mux.function);        return -EINVAL;    }    //如果设备树里有直接指定组,那么就会以指定的组为默认选择    if (map->data.mux.group) {        bool found = false;        group = map->data.mux.group;        //当然,也还是要校验下,组是否有效        for (i = 0; i < num_groups; i++) {            if (!strcmp(group, groups[i])) {                found = true;                break;            }        }        if (!found) {            dev_err(pctldev->dev,                "invalid group \"%s\" for function \"%s\"\n",                group, map->data.mux.function);            return -EINVAL;        }    } else {        //如果没有指定,那么就用第一个组咯        group = groups[0];    }    //根据选定的组,获取该组的信息,返回的是该组对应的索引,这里会调用pmxops的get_group_name,操作    //过程和前面的pinmux_func_name_to_selector类似    ret = pinctrl_get_group_selector(pctldev, group);    if (ret < 0) {        dev_err(pctldev->dev, "invalid group %s in map table\n",            map->data.mux.group);        return ret;    }    //保存该组索引    setting->data.mux.group = ret;    return 0;}

继续pinconf_map_to_setting吧,它是和pinconf相关,对应pinconf.c文件,但里面还没用pinconf_ops,后面才会用到:

int pinconf_map_to_setting(struct pinctrl_map const *map,                struct pinctrl_setting *setting){    struct pinctrl_dev *pctldev = setting->pctldev;    int pin;    switch (setting->type) {//该设置到底是什么类型,是pinctrl driver回调dt_node_to_map里解析的    //配置有两种类型,一种是一个pin一个pin的配置,一种是将一些pin的配置组合为一个组,指定某个组就会采用那个组里的所有的pin的配置    case PIN_MAP_TYPE_CONFIGS_PIN:        //根据设备树里指定的pin名字获取它对应的pin号        pin = pin_get_from_name(pctldev,                    map->data.configs.group_or_pin);        if (pin < 0) {            dev_err(pctldev->dev, "could not map pin config for \"%s\"",                map->data.configs.group_or_pin);            return pin;        }        //将该设置对应的pin号保存起来        setting->data.configs.group_or_pin = pin;        break;    case PIN_MAP_TYPE_CONFIGS_GROUP:        //根据设备树指定的pin组获取它对应的group号        pin = pinctrl_get_group_selector(pctldev,                     map->data.configs.group_or_pin);        if (pin < 0) {            dev_err(pctldev->dev, "could not map group config for \"%s\"",                map->data.configs.group_or_pin);            return pin;        }        //将该设置对应的group号保存起来        setting->data.configs.group_or_pin = pin;        break;    default:        return -EINVAL;    }    //保存所有其他用于配置的信息    setting->data.configs.num_configs = map->data.configs.num_configs;    setting->data.configs.configs = map->data.configs.configs;    return 0;}

现在都仅仅是分析了pinmux_map_to_settingpinconf_map_to_setting,具体它们的作用我们在后面才能看的出来,所以继续分析吧!到这里pinctrl_get分析完了,执行完pinctrl_get,就意味着该设备的所有和pin相关的设备树信息已经解析完成,并生成了用于管理、配置的数据结构,为以后的其他api提供了支持。其他驱动一般不会直接调用pinctrl_get,而是调用它的变体devm_pinctrl_get或者pinctrl_get_select来初始化设备。devm_pinctrl_get就不用说了啦,pinctrl_get_select类似与pinctrl_register调用pinctrl_get及它后的那段代码的结合,不仅调用了pinctrl_get,还根据输入参数让设备处于指定的状态。通过pinctrl_select_state来让设备处于指定的状态,下面开始分析它,通过分析它,应该就清楚了前面各种填充的作用啦!

int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)  {    struct pinctrl_setting *setting, *setting2;    struct pinctrl_state *old_state = p->state;    int ret;    //如果当前就是该状态,直接返回成功    if (p->state == state)        return 0;    //如果之前有设置过状态,那需要做一些额外处理    if (p->state) {        /*         * The set of groups with a mux configuration in the old state         * may not be identical to the set of groups with a mux setting         * in the new state. While this might be unusual, it's entirely         * possible for the "user"-supplied mapping table to be written         * that way. For each group that was configured in the old state         * but not in the new state, this code puts that group into a         * safe/disabled state.         */        list_for_each_entry(setting, &p->state->settings, node) {            bool found = false;            if (setting->type != PIN_MAP_TYPE_MUX_GROUP)                continue;            list_for_each_entry(setting2, &state->settings, node) {                if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)                    continue;                if (setting2->data.mux.group ==                        setting->data.mux.group) {                    found = true;                    break;                }            }            if (!found)                pinmux_disable_setting(setting);        }    }    p->state = NULL;    /* Apply all the settings for the new state */    //    list_for_each_entry(setting, &state->settings, node) {    //遍历该设备的该状态下的所有设置,一个个设置上去        switch (setting->type) {        case PIN_MAP_TYPE_MUX_GROUP://如果该设置是mux设置,那么调用pinmux_enable_setting,这里面            //就用到了前面填充的信息            ret = pinmux_enable_setting(setting);            break;        case PIN_MAP_TYPE_CONFIGS_PIN:        case PIN_MAP_TYPE_CONFIGS_GROUP://如果该设置是conf设置,那么调用pinconf_apply_setting,            //这里面就用到了前面填充的信息            ret = pinconf_apply_setting(setting);            break;        default:            ret = -EINVAL;            break;        }        if (ret < 0) {            goto unapply_new_state;        }    }    p->state = state;    return 0;unapply_new_state:      dev_err(p->dev, "Error applying setting, reverse things back\n");    list_for_each_entry(setting2, &state->settings, node) {        if (&setting2->node == &setting->node)            break;        /*         * All we can do here is pinmux_disable_setting.         * That means that some pins are muxed differently now         * than they were before applying the setting (We can't         * "unmux a pin"!), but it's not a big deal since the pins         * are free to be muxed by another apply_setting.         */        if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)            pinmux_disable_setting(setting2);    }    /* There's no infinite recursive loop here because p->state is NULL */    if (old_state)        pinctrl_select_state(p, old_state);    return ret;}

pinmux_enable_setting当然处于pinmux.c中,根据前面填充的setting->data.mux.group获取该组的pin信息,然后以pin号为参数循环回调ops->request,最后回调ops->enable。

pinconf_apply_setting当然处于pinconf.c中,根据前面填充的group_or_pinconfigsnum_configs以及type分别回调pin_config_setpin_config_group_set

最后补充下,本文描述的都是基于设备树方式的pinctrl处理,其实也可以通过pinctrl_register_mappings调用静态添加所有的设置,只是不常用该方式而已。


原创粉丝点击