支持向量机(SVM)

来源:互联网 发布:四川省教师网络培训 编辑:程序博客网 时间:2024/05/21 08:59

svmMLiA.py,为没有用启发式算法,随机选择alphas[i],alphas[j]的SMO算法的实现。
svmQuicken.py,为启用了启发是算法选择alphas[i],alphas[j]的SMO算法的实现。
代码写的有点乱,结果出来之前,没心思整理代码,结果出来后,就更没心思整理代码了。
(以下正确率的结果,都是由训练数据获得超平面之后,再拿训练数据去测试的。没有专门去整理测试数据)

一、线性可分-线性核

下图一是svmMLiA.py实现的,线性可分,随机选择alphas[i]和alphas[j],很慢,但效果很好。红色点大圈为支持向量点,正确率为0.92
图一
下图二是svmQuicken.py实现的,线性可分,启发式算法选择alphas[i]和alphas[j],很快,效果还行,不如图一。红色点大圈为支持向量点,正确率为0.90
图二

二、线性不可分-高斯核

下图都是svmMLiA.py实现的,随机选择alphas[i]和alphas[j]。图三、图四、图五分别是高斯核的参数sigma = 0.1、0.3、0.6得出的结果,红色的大圈为支持向量。显然,sigma越小,得到的支持向量点越多,结果越准确,如果支持向量太多,相当于每次都利用整个数据集进行分类,这时便成了K近邻算法了。sigma = 0.1、0.3、0.6的准确率分别是0.915254,0.830508,0.813559
图三
图四
图五

svmMLiA.py

'''Created on 2017年7月9日@author: fujianfei'''from os.path import os import numpy as np  #导入数据,数据集def loadDataSet (fileName):    data_path = os.getcwd()+'\\data\\'    labelMat = []    svmData = np.loadtxt(data_path+fileName,delimiter=',')    dataMat=svmData[:,0:2]    #零均值化#     meanVal=np.mean(dataMat,axis=0)#     dataMat=dataMat-meanVal    label=svmData[:,2]    for i in range (np.size(label)):        if label[i] == 0 or label[i] == -1:            labelMat.append(float(-1))        if label[i] == 1:            labelMat.append(float(1))    return dataMat.tolist(),labelMat#简化版SMO算法,不启用启发式选择alpha,先随机选def selectJrand(i,m):    j=i    while (j==i):        j = int(np.random.uniform(0,m))#在0-m的随机选一个数    return j#用于调整大于H或小于L的值,剪辑最优解def clipAlpha(aj,H,L):    if aj > H:        aj = H    if L > aj:        aj = L    return aj'''定义核函数kernelOption=linear 线性kernelOption=rbf 高斯核函数'''def calcKernelValue(matrix_x, sample_x, kernelOption):      kernelType = kernelOption[0]      numSamples = matrix_x.shape[0]      kernelValue = np.mat(np.zeros((numSamples, 1)))      if kernelType == 'linear':          kernelValue = matrix_x.dot(sample_x.T)      elif kernelType == 'rbf':          sigma = kernelOption[1]          if sigma == 0:              sigma = 1.0          for i in range(numSamples):              diff = matrix_x[i, :] - sample_x              kernelValue[i] = np.exp(diff.dot(diff.T) / (-2.0 * sigma**2))      else:          raise NameError('Not support kernel type! You can use linear or rbf!')      return kernelValue  '''简化版SMO算法。dataMatIn:输入的数据集classLabels:类别标签C:松弛变量前的常数toler:容错率maxIter:最大循环数'''def smoSimple(dataMatIn,classLabels,C,toler,maxIter,kernelOption):    dataMatrix = np.mat(dataMatIn);labelMat = np.mat(classLabels).transpose()    b=0;m,n = np.shape(dataMatrix)    alphas = np.mat(np.zeros((m,1)))    iter = 0    while(iter < maxIter):        alphaPairsChanged = 0 #记录alpha值是否优化,即是否变化        for i in range(m):#遍历数据集,第一层循环,遍历所有的alpha            fXi = float(np.multiply(alphas,labelMat).T.dot(calcKernelValue(dataMatrix,dataMatrix[i,:],kernelOption))) + b            Ei = fXi - float(labelMat[i])            if (((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0))):                j = selectJrand(i, m)                fXj = float(np.multiply(alphas,labelMat).T.dot(calcKernelValue(dataMatrix,dataMatrix[j,:],kernelOption))) + b                Ej = fXj - float(labelMat[j])                alphaIold = alphas[i].copy();                alphaJold = alphas[j].copy();                if (labelMat[i] != labelMat[j]):                    L = max(0,alphas[j] - alphas[i])                    H = min(C,C+alphas[j] - alphas[i])                else:                    L = max(0,alphas[j] + alphas[i] -C)                    H = min(C,alphas[j] + alphas[i])                if(L == H):print('L==H');continue                eta = 2.0 * calcKernelValue(dataMatrix[i,:],dataMatrix[j,:],kernelOption) - calcKernelValue(dataMatrix[i,:],dataMatrix[i,:],kernelOption) - calcKernelValue(dataMatrix[j,:],dataMatrix[j,:],kernelOption)                if(eta >= 0):print('eta >= 0');('alpha[j]=%f###############################' % alphas[j]);continue                alphas[j] -= labelMat[j] * (Ei - Ej)/eta                 alphas[j] = clipAlpha(alphas[j], H, L)                  if (abs(alphas[j]-alphaJold) < 0.0001) : print('j not moving enough');continue                alphas[i] += labelMat[i]*labelMat[j]*(alphaJold - alphas[j])                 b1 = b - Ei - labelMat[i]*(alphas[i] - alphaIold)*calcKernelValue(dataMatrix[i,:],dataMatrix[i,:],kernelOption) - labelMat[j]*(alphas[j]-alphaJold)*calcKernelValue(dataMatrix[j,:],dataMatrix[i,:],kernelOption)                 b2 = b - Ej - labelMat[i]*(alphas[i] - alphaIold)*calcKernelValue(dataMatrix[i,:],dataMatrix[j,:],kernelOption) - labelMat[j]*(alphas[j]-alphaJold)*calcKernelValue(dataMatrix[j,:],dataMatrix[j,:],kernelOption)                 if (0 < alphas[i] and (C > alphas[i])):b=b1                elif (0 < alphas[j] and (C > alphas[j])):b=b2                else:b=(b1+b2)/2.0                alphaPairsChanged += 1                print("iter:%d i:%d,pairs changed %d" % (iter,i,alphaPairsChanged))            if(alphaPairsChanged == 0) :             iter += 1         else :             iter = 0        print("iteration number:%d" % iter)    return b,alphas                                                                                                                                               

**

svmQuicken.py

**

import numpy as npimport matplotlib.pyplot as plt'''Created on 2017年7月11日@author: fujianfei'''class optStruct:    '''    定义common数据结构,存储需要用到的变量:    '''    def __init__(self, dataMatIn, classLabels, C, toler, kernelOption):        '''        X:训练的数据集        labelMat:X对应的类别标签        C:松弛变量系数        tol:容错率        m:样本的个数        alphas:拉格朗日系数,需要优化项        b:阈值        eCache:第一列 标志位,标志Ek是否有效,1为有效,0为无效 第二列 错误率Ek        K:核矩阵        kernelOption:核选项,如果是线性核kernelOption=('linear', 0) 如果是高斯核kernelOption=('rbf', sigma),sigma为高斯核参数        '''        self.X = dataMatIn        self.labelMat = classLabels        self.C = C        self.tol = toler        self.kernelOpt = kernelOption        self.m,self.n = np.shape(dataMatIn)        self.alphas = np.mat(np.zeros((self.m,1)))        self.b = 0        self.eCache = np.mat(np.zeros((self.m,2)))        self.K = np.mat(np.zeros((self.m,self.m)))        #事先把核矩阵都计算并存储好,避免以后多次计算        for i in range(self.m):            self.K[:,i] = calcKernelValue(self.X, self.X[i,:], kernelOption)def calcEK(oS,k):    '''    计算误差Ek    '''    fXk = float(np.multiply(oS.alphas,oS.labelMat).T.dot(oS.K[:,k])) + oS.b    Ek = fXk - float(oS.labelMat[k])      return Ekdef selectJ(i,oS,Ei):    '''    启发式算法选择j,选择具有最大步长的j    '''    #1.定义步长maxDeltaE (Ei-Ek)  取得最大步长时的K值maxK  需要返回的Ej (具有最大步长 ,即|Ei-Ej|值最大)    maxK = -1; maxDeltaE = 0; Ej = 0    #2.将Ei保存到数据结构的eCache中去    oS.eCache[i] = [1,Ei]    #3.定义list validEcacheList,存放有效的Ek    validEcacheList = np.nonzero(oS.eCache[:,0].A)[0]    #4.判断 如果len(validEcacheList)>1 遍历validEcacheList,找到最大的|Ei-Ej|    if (len(validEcacheList) > 1):        for k in validEcacheList:            Ek = calcEK(oS, k)            deltaE = abs(Ei - Ek)            if (maxDeltaE < deltaE):                maxDeltaE = deltaE                maxK = k                Ej = Ek        return maxK,Ej    #5.否则就随机选择j    else:        print("---------------随机选择的j---------------------")        j = selectJrand(i,oS.m)        Ej = calcEK(oS, j)        return j,Ejdef updateEk(oS,k):    '''    计算并更新Ek值到缓存eCache中    '''    Ek = calcEK(oS, k)    oS.eCache[k] = [1,Ek]def calcfXk(oS,k):    '''    计算误差fXk,数据集训练结束后,可用它来对testdate进行分类    '''    fXk = float(np.multiply(oS.alphas,oS.labelMat).T.dot(oS.K[:,k])) + oS.b    return fXkdef calcKernelValue(matrix_x, sample_x, kernelOption):      '''    定义核函数kernelOption=linear 线性kernelOption=rbf 高斯核函数    '''     kernelType = kernelOption[0]      numSamples = matrix_x.shape[0]      kernelValue = np.mat(np.zeros((numSamples, 1)))      if kernelType == 'linear':          kernelValue = matrix_x.dot(sample_x.T)      elif kernelType == 'rbf':          sigma = kernelOption[1]          if sigma == 0:              sigma = 1.0          for i in range(numSamples):              diff = matrix_x[i, :] - sample_x              kernelValue[i] = np.exp(diff.dot(diff.T) / (-2.0 * sigma**2))      else:          raise NameError('Not support kernel type! You can use linear or rbf!')      return kernelValue  def selectJrand(i,m):    '''    根据i,随机选择j    '''    j=i    while (j==i):        j = int(np.random.uniform(0,m))#在0-m的随机选一个数    return jdef clipAlpha(aj,H,L):    '''    用于调整大于H或小于L的值,剪辑最优解    '''    if aj > H:        aj = H    if L > aj:        aj = L    return ajdef innerL(i,oS):    '''    内循环,选定i后,在此函数根据启发式算法选定j,优化alphas[i],alphas[j]    计算优化后的Ei,Ej,b,最后再将它们全部存入数据结构optStruct    '''    Ei = calcEK(oS, i)    #判断优化前的alphas[i]是否满足KKT条件,如果不满足,进行优化(启发式算法选择i)    #看论坛上有人文,KKT条件有三个:alphas[i]=0;alphas[i]=C;0<alphas[i]<C;而这里只加了0<alphas[i]<C的判断是不是漏了等于0和等于C的情况    #其实alphas[i]=0和alphas[i]=C已经包含进了这个判断    #alphas[i]=0时满足oS.alphas[i] < oS.C,故而必要要满足oS.labelMat[i]*Ei < 0,两者一和起来不就是alphas[i]=0的KKT条件吗。同理,alphas[i]=C也是    if (((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0))):        #根据启发式算法选定j,并计算好对应的Ej        j,Ej = selectJ(i, oS, Ei)        print("启发式算法选出的 i = %d,j= %d" % (i,j))        #重新开辟两处内存,复制优化前的alphas[i]和alphas[j]        #因为后面判断优化后的alphas[j]是否有足够的变化,需要用到优化前的        alphaIold = oS.alphas[i].copy();alphaJold = oS.alphas[j].copy();        #计算alphas[j]的边界L,H        if (oS.labelMat[i] != oS.labelMat[j]):            L = max(0,oS.alphas[j] - oS.alphas[i])            H = min(oS.C,oS.C+oS.alphas[j] - oS.alphas[i])        else:            L = max(0,oS.alphas[j] + oS.alphas[i] - oS.C)            H = min(oS.C,oS.alphas[j] + oS.alphas[i])        #如果最小值L等于最大值H,则没必要再进行优化了,直接返回0        if(L == H):print('L=%d == H=%d' % (L,H));return 0        #计算eta        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]        #如过eta>=0,则可证明最优值在边界处取得,不需要再优化,直接返回0        #解释:-eta是我们构造的拉格朗日函数L的二阶导数,如果eta>0,二阶导数<0,L在区间内为单调函数,所以最优值在边界处取得        #最优值解alphas[j]就等于L或H,此时不需要优化,也可以将此时的alphas[j]和对应的alphas[i]保存到oS里        #但一般情况,不会出现这种情况,比如我们的线性核函数,可以想象成(x1+x2)^2,拆开后2*x1*x2 - x1^2 -X2^2 肯定是<0的。=0的情况太复杂,但基本不会出现,不考虑。        if(eta >= 0):            print('eta >= 0#################################################################################')            #不需要再优化,直接返回0            return 0        #更新alphas[j]        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta         oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)        #更新Ej        updateEk(oS, j)        #如果alphas[j]的变化很小,可忽略,则不需再优化,直接返回0        if (abs(oS.alphas[j]-alphaJold) < 0.00001) :             print('j not moving enough')            #j没有变化足够的多,不需要再优化,直接返回0            return 0        #根据alphas[j]计算alphas[i]        oS.alphas[i] += oS.labelMat[i]*oS.labelMat[j]*(alphaJold - oS.alphas[j])        #更新Ei        updateEk(oS, i)        #计算阈值b        b1 = oS.b - Ei - oS.labelMat[i]*(oS.alphas[i] - alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,i]        b2 = oS.b - Ej - oS.labelMat[i]*(oS.alphas[i] - alphaIold)*oS.K[i,j] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]        if (0 < oS.alphas[i] and (oS.C > oS.alphas[i])):oS.b=b1        elif (0 < oS.alphas[j] and (oS.C > oS.alphas[j])):oS.b=b2        else:oS.b=(b1+b2)/2.0        return 1    else:print("alphas[i]在容错范围内,不需优化");return 0def isFitKKT(oS):    '''    判断是否在精度范围内符合KKT条件,符合返回True.作为停机的最后验证条件.精度为oS.tol    如果符合KKT条件,那么找出的alphas,一定为最优解    '''    for i in range(oS.m):        #如果alphas小于0 或 大于C,不满足KKT条件,直接返回False        if (oS.alphas[i] < 0 or oS.alphas[i] > oS.C) : return False         #如果不满足KKT的核心条件,之间返回False        if ((oS.alphas[i] == 0 and calcfXk(oS,i) * oS.labelMat[i] < 1) or (oS.alphas[i] > 0 and oS.alphas[i] < oS.C and abs(calcfXk(oS,i) * oS.labelMat[i] - 1) > oS.tol) or (oS.alphas[i] == oS.C and calcfXk(oS,i) * oS.labelMat[i] > 1)) : return False    #如果上面两个条件都满足了,最后再满足alphas*labelMat之和等于0,则便返回True,符合KKT条件    return abs(oS.alphas.T.dot(oS.labelMat)) < oS.toldef smoP(dataMatIn,classLabels,C,toler,maxIter,kernelOption):    '''    smo优化后的算法    dataMatIn:训练的数据集    classLabels:类别标签    C:松弛变量系数    toler:容错率    kernelOption:核选项,如果是线性核kernelOption=('linear', 0) 如果是高斯核kernelOption=('rbf', sigma),sigma为高斯核参数    '''    oS = optStruct(np.mat(dataMatIn),np.mat(classLabels).T,C,toler, kernelOption)#初始化oS    iter = 0    entireSet = True;alphaPairsChanged = 0    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)) :         alphaPairsChanged = 0        if entireSet : #遍历所有的值              for i in range(oS.m) :                alphaPairsChanged += innerL(i, oS)                print("fullSet, iter : %d i : %d, paris changes %d" % (iter,i,alphaPairsChanged))                print(isFitKKT(oS))            iter += 1        else :#遍历非边界上的值(支持向量机)            nonBoundIs = np.nonzero((oS.alphas.A >0) * (oS.alphas.A < C))[0]            for i in nonBoundIs :                alphaPairsChanged += innerL(i, oS)                print("non-bound, iter : %d i : %d, paris changes %d" % (iter,i,alphaPairsChanged))                print(isFitKKT(oS))            iter += 1        if entireSet : entireSet = False        elif (alphaPairsChanged == 0) : entireSet = True        print("iteration number : %d" % iter)    print("-#-#-#-#-#-#-#-#-#_#-#-#_#-#_##_#_#_#_#_#_#_#__#_#_#_#_#_")    print(isFitKKT(oS))    return oSdef showResult(oS):    '''    画图    '''    w=np.multiply(oS.alphas,oS.labelMat).T.dot(oS.X)    w=np.mat(w)    x1=oS.X[:,0]    y1=oS.X[:,1]    x2=range(20,100)    b=float(oS.b)    w0=float(w[0,0])    w1=float(w[0,1])#     y2 = [-b/w1-w0/w1*elem for elem in x2]#     plt.plot(x2, y2)    for i in range(oS.m):          if ((oS.alphas[i] < oS.C) and (oS.alphas[i] > 0)):            print('########################')            print(oS.alphas[i])            plt.scatter(x1[i], y1[i],s=60,c='red',marker='o',alpha=0.5,label='SV')        if int(oS.labelMat[i]) == -1:              plt.scatter(x1[i], y1[i],s=30,c='red',marker='.',alpha=0.5,label='-1')          elif int(oS.labelMat[i]) == 1:              plt.scatter(x1[i], y1[i],s=30,c='blue',marker='x',alpha=0.5,label='+1')     plt.show()def testSVM(svm, test_x, test_y):      '''    测试训练后结果正确率    '''    test_x = np.mat(test_x)      test_y = np.mat(test_y).T     numTestSamples = test_x.shape[0]      supportVectorsIndex = np.nonzero(svm.alphas.A > 0)[0]      supportVectors      = svm.X[supportVectorsIndex]      supportVectorLabels = svm.labelMat[supportVectorsIndex]      supportVectorAlphas = svm.alphas[supportVectorsIndex]      matchCount = 0      for i in range(numTestSamples):          kernelValue = calcKernelValue(supportVectors, test_x[i, :], svm.kernelOpt)          predict = kernelValue.T.dot(np.multiply(supportVectorLabels, supportVectorAlphas)) + svm.b          if np.sign(predict) == np.sign(test_y[i]):              matchCount += 1      accuracy = float(matchCount) / numTestSamples      return accuracy  

_init_.py

from SVM import svmMLiA,svmQuickenimport numpy as np  if __name__ == '__main__':    dataMatIn,classLabels = svmMLiA.loadDataSet('data2.txt')    C=0.6    toler=0.001    maxIter = 40    #用启发式算法版本,速度快,但是效果不好    oS = svmQuicken.smoP(dataMatIn, classLabels, C, toler, maxIter, ('linear', 0))    #用启发式算法版本,速度快,但是效果不好    #不用启发式算法,速度慢,但是效果好#     b,alphas = svmMLiA.smoSimple(dataMatIn, classLabels, C, toler, maxIter, ('rbf', 0.05))#     oS = svmQuicken.optStruct(np.mat(dataMatIn),np.mat(classLabels).T,C,toler, ('rbf', 0.05))#初始化oS#     oS.alphas = alphas#     oS.b = b    #不用启发式算法,速度慢,但是效果好    print(oS.alphas)    #计算正确率    rightRate = svmQuicken.testSVM(oS,dataMatIn, classLabels)    #画图    svmQuicken.showResult(oS)    print("正确率是 : %f" % rightRate)
原创粉丝点击