深入理解ConcurrentHashMap

来源:互联网 发布:淘宝开店费用怎么算 编辑:程序博客网 时间:2024/06/02 05:50

说明

HashMap是线程不安全的,在多线程的环境下,操作HashMap会导致线程安全的问题。若使用同步包装器下的HashMap,则会造成很大的性能问题。为此,JDK提供了ConcurrentHashMap来解决此问题。本文通过查看源码和其他优秀博文,对ConcurrentHashMap进行总结。
由于不同版本中的实现有所不同,本文基于JDK 7进行总结。

正文

ConcurrentHashMap采用了分段锁的设计,只有在同一个分段中内才存在竞争关系,所以在进行一般操作时,不需要对整个map加锁。分段锁极大提高了并发下的处理能力。

/*     * The basic strategy is to subdivide the table among Segments,     * each of which itself is a concurrently readable hash table.....     * 由此看出,ConcurrentHashMap底层实现策略是多个段segment,每一个是具有并发可读性的HashTable  * /

ConcurrentHashMap的数据结构

这里写图片描述

ConcurrentHashMap的成员变量

static final int DEFAULT_INITIAL_CAPACITY = 16;//初始容量为16static final float DEFAULT_LOAD_FACTOR = 0.75f;//负载因子为0.75static final int DEFAULT_CONCURRENCY_LEVEL = 16;/*并发度,即同时更新ConcurrentHashMap且不产生锁竞争的最大线程数,也就是分段锁的个数,默认为16.一经指定,便不可改变。如果元素增加导致扩容,也不会增加segment的数量,只会增加segment中数组链表的容量的大小。*/final Segment<K,V>[] segments;

创建Segement时,采用了延迟初始化机制,每次put操作前都要检查key对应的Segment是否为null,若是则调用ensureSegment()确保对应的Segement被创建。ensureSegment可能在并发环境下被调用,但是并未通过锁机制避免竞争,采用了Unsafe对象的getObjectVolatile()方法提供的原子读语义结合CAS来确保Segment创建的原子性。

/*  all but one segments are constructed only when first needed (see ensureSegment).*/    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))                == null) { // recheck                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))                       == null) {                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))                        break;                }            }     

Segment是继承自ReentrantLock类,所以Segment对象可以充当锁的角色。每个segment中都由一个HashEntry类型的数组,HashEntry对象构成了数组链表,数组的大小为桶的个数。

static final class Segment<K,V> extends ReentrantLock implements Serializable {    Segment(float lf, int threshold, HashEntry<K,V>[] tab) {            this.loadFactor = lf;            this.threshold = threshold;            this.table = tab;        }      ...   }

Segment的内部结构

HashEntry的结构

  static final class HashEntry<K,V> {        final int hash;        final K key;        volatile V value;        volatile HashEntry<K,V> next;        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {            this.hash = hash;            this.key = key;            this.value = value;            this.next = next;        }        /**         * Sets next field with volatile write semantics.  (See above         * about use of putOrderedObject.)         */        final void setNext(HashEntry<K,V> n) {            UNSAFE.putOrderedObject(this, nextOffset, n);        }

在HashEntry类中,hash,key声明为final,value,next声明为volatile。(不同于JDK 6版本中将next设置为final,因此无法在链中添加或删除结点,对于put操作,一律添加的链的头部,对于remove操作,需要将删除结点前的所有结点复制,再将复制完的最后一个结点的next设为当前删除结点的下一个结点。)final的不可变性,volatile的保证可见性是ConcurrentHashMap的get操作不需要同步加锁的重要原因,这里使用setNext方法保证了原子性。

ConcurrentHashMap的初始化

  public ConcurrentHashMap(int initialCapacity,                             float loadFactor, int concurrencyLevel) {//带参数的构造函数:初始容量,负载因子,并发度        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)            throw new IllegalArgumentException();        if (concurrencyLevel > MAX_SEGMENTS)            concurrencyLevel = MAX_SEGMENTS;        // Find power-of-two sizes best matching arguments        int sshift = 0;        int ssize = 1;        while (ssize < concurrencyLevel) {            ++sshift;            ssize <<= 1;        }        /*          参数segmentShitft,segmentMask 在定位segment时使用,segmentShift=32-ssize向左移动的次数,segmentMask=ssize-1.ssize的最大长度为65536,对应的segmentShift最大值为16,segmentMask最大值为65536,对应的二进制16位全为1.        */        this.segmentShift = 32 - sshift;        this.segmentMask = ssize - 1;        if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        int c = initialCapacity / ssize;        if (c * ssize < initialCapacity)            ++c;        int cap = MIN_SEGMENT_TABLE_CAPACITY;        while (cap < c)            cap <<= 1;        // create segments and segments[0]        Segment<K,V> s0 =            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),                             (HashEntry<K,V>[])new HashEntry[cap]);        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]        this.segments = ss;    } public ConcurrentHashMap() {//无参构造函数,使用默认值调用三参数的构造函数        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);    }

Segment中的操作

put操作
在此版本中,put操作使用了自旋锁机制,提高了性能。(因为java线程是映射到系统的线程,阻塞唤醒都需要切换到内核态,频繁的操作会造成严重的性能问题,使用自旋旋可以减轻影响。详见周志明的《深入理解java虚拟机》)

put方法
进入此方法,尝试获取锁,能获取锁则进行下步操作,不能则调用scanAndLockForput()方法。

获取锁后,如果链中能找到与key相等的节点,并且当前执行的put()方法而不是putIfAbsent()方法,记录旧值,更新该结点的值,退出循环,完成put操作。
若没找到,此时需创建新的节点,但是在自旋等待时已经创建好,所以不需要创建,只更新它的next指针即可。这里调用了setNext()方法。
在执行插入操作时,将count值加1,首先会检查本次操作会不会导致segment中节点数量超过阈值threshold,若会,则先进行扩容和rehash操作。(这点与HashMap不同,HashMap的put操作,是先插入,后判断是否超过阈值,决定是否扩容)

final V put(K key, int hash, V value, boolean onlyIfAbsent) {            HashEntry<K,V> node = tryLock() ? null :                scanAndLockForPut(key, hash, value);            V oldValue;            try {                HashEntry<K,V>[] tab = table;                int index = (tab.length - 1) & hash;//定位段中的哪一个桶(segment中HashEntry数组中的某一位置)                HashEntry<K,V> first = entryAt(tab, index);                for (HashEntry<K,V> e = first;;) {                    if (e != null) {                        K k;                        if ((k = e.key) == key ||                            (e.hash == hash && key.equals(k))) {                            oldValue = e.value;                            if (!onlyIfAbsent) {                                e.value = value;                                ++modCount;                            }                            break;                        }                        e = e.next;                    }                    else {                        if (node != null)                            node.setNext(first);                        else                            node = new HashEntry<K,V>(hash, key, value, first);                        int c = count + 1;                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)                            rehash(node);                        else                            setEntryAt(tab, index, node);                        ++modCount;                        count = c;                        oldValue = null;                        break;                    }                }            } finally {                unlock();            }            return oldValue;        }

scanAndLockForput方法

当put操作没有获取锁时,不是直接进入等待状态,而是调用此方法,在方法中循环查找链中是否有与key相等的节点,没有,则创建一个新的节点。尝试n次,直到尝试次数超过限制(retries > MAX_SCAN_RETRIES 最大尝试次数,单核为1,多核为64),才真正进入等待状态,即所谓的自旋锁等待。

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {            HashEntry<K,V> first = entryForHash(this, hash);            HashEntry<K,V> e = first;            HashEntry<K,V> node = null;            int retries = -1; // negative while locating node            while (!tryLock()) {                HashEntry<K,V> f; // to recheck first below                if (retries < 0) {                    if (e == null) {                        if (node == null) // speculatively create node                            node = new HashEntry<K,V>(hash, key, value, null);                        retries = 0;                    }                    else if (key.equals(e.key))                        retries = 0;                    else                        e = e.next;                }                else if (++retries > MAX_SCAN_RETRIES) {                    lock();                    break;                }                else if ((retries & 1) == 0 &&                         (f = entryForHash(this, hash)) != first) {//若发现链头发生变化,则更新节点链的链头,重置retries值为-1,重新为尝试获取锁而自旋遍历                    e = first = f; // re-traverse if entry changed                    retries = -1;                }            }            return node;        }

rehash操作
rehash操作是对某一个段进行操作,创建了一个比原来容量大两倍的数组,然后遍历数组及数组项中的每条链,对于每个节点都重新计算了index,然后创建一个新的节点插入到新的数组中,创建新节点是为了保证其它线程在rehash其间的get操作能够返回正确的值。为了减少新建节点的开销,做了两点优化:1.如果只有一个节点,就直接赋值给新的数组项,若是一个链,先遍历该链找到第一个后面所有节点的index相同的节点p,然后只重新创建节点p以前的节点即可。节点p为头节点的子链直接将p放到新桶中,后面的节点自然就连接上了。

在注释中,我们可以看到,由于扩容是按照2的幂次方进行的,所以新的索引值是原来的或者是原来的加上一个2的幂次方。

 @SuppressWarnings("unchecked")        private void rehash(HashEntry<K,V> node) {            /*             * Reclassify nodes in each list to new table.  Because we             * are using power-of-two expansion, the elements from             * each bin must either stay at same index, or move with a             * power of two offset. We eliminate unnecessary node             * creation by catching cases where old nodes can be             * reused because their next fields won't change.             * Statistically, at the default threshold, only about             * one-sixth of them need cloning when a table             * doubles. The nodes they replace will be garbage             * collectable as soon as they are no longer referenced by             * any reader thread that may be in the midst of             * concurrently traversing table. Entry accesses use plain             * array indexing because they are followed by volatile             * table write.             */            HashEntry<K,V>[] oldTable = table;            int oldCapacity = oldTable.length;            int newCapacity = oldCapacity << 1;            threshold = (int)(newCapacity * loadFactor);            HashEntry<K,V>[] newTable =                (HashEntry<K,V>[]) new HashEntry[newCapacity];            int sizeMask = newCapacity - 1;            for (int i = 0; i < oldCapacity ; i++) {                HashEntry<K,V> e = oldTable[i];                if (e != null) {                    HashEntry<K,V> next = e.next;                    int idx = e.hash & sizeMask;                    if (next == null)   //  Single node on list                        newTable[idx] = e;                    else { // Reuse consecutive sequence at same slot                        HashEntry<K,V> lastRun = e;                        int lastIdx = idx;                        for (HashEntry<K,V> last = next;                             last != null;                             last = last.next) {                            int k = last.hash & sizeMask;                            if (k != lastIdx) {                                lastIdx = k;                                lastRun = last;                            }                        }                        newTable[lastIdx] = lastRun;                        // Clone remaining nodes                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {                            V v = p.value;                            int h = p.hash;                            int k = h & sizeMask;                            HashEntry<K,V> n = newTable[k];                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);                        }                    }                }            }            int nodeIndex = node.hash & sizeMask; // add the new node            node.setNext(newTable[nodeIndex]);            newTable[nodeIndex] = node;            table = newTable;        }

get操作
调用get方法,根据key值获得对应的value,进入方法后确定哪个段,哪个桶,再遍历链找出对应的value,不存在返回null。
与之前版本不同,在JDK 6中,若在链中找到对应的key值,而对应的value值为空,此时需要加锁重新读。此版本用UNSAFE.getObjectVolatile()避免了这个问题。

public V get(Object key) {        Segment<K,V> s; // manually integrate access methods to reduce overhead        HashEntry<K,V>[] tab;        int h = hash(key.hashCode());        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&            (tab = s.table) != null) {            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);                 e != null; e = e.next) {                K k;                if ((k = e.key) == key || (e.hash == h && key.equals(k)))                    return e.value;            }        }        return null;    }

remove操作
调用此方法,跟put方法一样,尝试获取锁,不能则进入自旋锁。
找到对应value值,直接更改next。在之前版本JDK 6中,需要创建新链以保证并发时不会出现脏读。next设为volatile和调用方法中使用UNSAFE.putOrderedObject()保证了可见性和原子性,避免了脏读的出现。

  final V remove(Object key, int hash, Object value) {            if (!tryLock())                scanAndLock(key, hash);            V oldValue = null;            try {                HashEntry<K,V>[] tab = table;                int index = (tab.length - 1) & hash;                HashEntry<K,V> e = entryAt(tab, index);                HashEntry<K,V> pred = null;                while (e != null) {                    K k;                    HashEntry<K,V> next = e.next;                    if ((k = e.key) == key ||                        (e.hash == hash && key.equals(k))) {                        V v = e.value;                        if (value == null || value == v || value.equals(v)) {                            if (pred == null)                                setEntryAt(tab, index, next);                            else                                pred.setNext(next);                            ++modCount;                            --count;                            oldValue = v;                        }                        break;                    }                    pred = e;                    e = next;                }            } finally {                unlock();            }            return oldValue;        }

ConcurrentHashMap的操作
put()操作
调用put方法时,先判断value值是否为空。是,抛出异常,由此看出再ConcurrentHashMap中value值不允许为NULL。否,根据key的hashCode值再hash求出hash值,以此hash值再用segmentShift和segmentMask的值定位段(Segment),定位段必须确保段存在,否则调用ensureSegment().
segment数量是2的n次方,根据hash值的高n位就可以确定在哪一个segment。
确定segment后,再调用put方法

/*@throws NullPointerException if the specified key or value is null*/public V put(K key, V value) {        Segment<K,V> s;        if (value == null)            throw new NullPointerException();        int hash = hash(key.hashCode());        int j = (hash >>> segmentShift) & segmentMask;        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment            s = ensureSegment(j);        return s.put(key, hash, value, false);    }   //由此方法可以看出ConcurrentHashMap中key或value值都不允许为null

ConcurrentHashMap中的isEmpty() ,size(),containsValue(),contains()操作都需要全局扫描Map,为减少锁对性能的影响,这里循环查找,并计算两次modCount值,若两次相等,说明两次遍历的过程中,整个的Map没有发生改变,查找的值是正确的,否则将segment逐个加锁计算。

 public int size() {        // Try a few times to get accurate count. On failure due to        // continuous async changes in table, resort to locking.        final Segment<K,V>[] segments = this.segments;        int size;        boolean overflow; // true if size overflows 32 bits        long sum;         // sum of modCounts        long last = 0L;   // previous sum        int retries = -1; // first iteration isn't retry        try {            for (;;) {                if (retries++ == RETRIES_BEFORE_LOCK) {                    for (int j = 0; j < segments.length; ++j)                        ensureSegment(j).lock(); // force creation                }                sum = 0L;                size = 0;                overflow = false;                for (int j = 0; j < segments.length; ++j) {                    Segment<K,V> seg = segmentAt(segments, j);                    if (seg != null) {                        sum += seg.modCount;                        int c = seg.count;                        if (c < 0 || (size += c) < 0)                            overflow = true;                    }                }                if (sum == last)                    break;                last = sum;            }        } finally {            if (retries > RETRIES_BEFORE_LOCK) {                for (int j = 0; j < segments.length; ++j)                    segmentAt(segments, j).unlock();            }        }        return overflow ? Integer.MAX_VALUE : size;    }

putIfAbsent、replace、remove、clear操作与put方法类似,它们在Segment中都实现,只需要通过hash值找到Segment,然后调用相应方法即可。

原创粉丝点击