xgboost+python参数介绍的简单使用

来源:互联网 发布:软件著作权登记申请表 编辑:程序博客网 时间:2024/06/04 18:58

官网参数介绍(英文版)

http://xgboost.readthedocs.io/en/latest/how_to/param_tuning.html
http://xgboost.readthedocs.io/en/latest/parameter.html

中文部分翻译版

http://blog.csdn.net/zc02051126/article/details/46711047

1. xgboost的参数介绍

  1. 控制过拟合
    • 直接控制模型的复杂度
      • max_depth, min_child_weight, gamma
    • 增大产生树的随机性
      • subsample, colsample_bytree
      • eta, num_round
  2. 处理不平衡的数据集
    • 预测的排序(AUC)
      • scale_pos_weight
    • 预测可靠性
      • max_delta_step
  3. 参数分别介绍
    • booster: [default=gbtree],可选gbtree和gblinear,gbtree使用基于树的模型进行提升计算,gblinear使用线性模型进行提升计算
    • silent: [default=0], 是否打印运行时信息,0为打印
    • nthread: [默认为支持的最大线程数], 运行时的线程数
    • num_pbuffer: [自动生成,不需要用户自己设置], 预测数量,一般是输入样本数
    • num_feature: [自动生成,不需要用户自己设置], 特征维数
    • eta: [default=0.3],取值范围[0,1],学习率,迭代的步长比例
    • gamma: [default=0],取值范围[0,$\infty$],损失阈值
    • max_depth: [default=6], 取值范围[0,$\infty$],树的最大深度
    • min_child_weight: [default=1], 取值范围[0,$\infty$],拆分节点权重和阈值,如果节点的样本权重和小于该阈值,就不再进行拆分
    • max_delta_step: [default=0],取值范围[0,$\infty$],每棵树的最大权重估计,0为没有限制
    • subsample: [default=1],取值范围(0,1],随机选取一定比例的样本来训练树
    • colsample_bytree: [default=1],取值范围(0,1],选取构造树的特征比例
    • colsample_bylevel: [default=1],取值范围(0,1],每个层分裂的节点数
    • lambda: [default=0],L2 正则的惩罚系数
    • alpha: [default=0],L1 正则的惩罚系数
    • tree_method: string,[default=’auto’],xgboost构建树的算法,‘auto’‘exact’‘approx’‘hist’
    • lambda_bias: 在偏置上的L2正则
    • sketch_eps: [default=0.03],只在approximate greedy algorithm上使用
    • scale_pos_weight: [default=1],用来控制正负样本的比例
    • updater: [default=’grow_colmaker,prune’],提供模块化的方式来构建树,一般不需要由用户设置
    • refresh_leaf: [default=1],刷新参数,如果为1,刷新叶子和树节点,否则只刷新树节点
    • process_type: [default=’default’],提升的方式
    • grow_policy: string [default=’depthwise’],控制新增节点的方式,‘depthwise’,分裂离根节点最近的节点,‘lossguide’,分裂损失函数变化最大的节点
    • max_leaves: [default=0],增加的最大节点数,只和lossguide’ grow policy相关
    • max_bins: [default=256],只和tree_method的‘hist’相关
    • objective: [default=reg:linear], 定义学习任务及相应的学习目标,可选的目标函数如下:
      • “reg:linear”, 线性回归。
      • “reg:logistic”, 逻辑回归。
      • “binary:logistic”, 二分类的逻辑回归问题,输出为概率。
      • “binary:logitraw”, 二分类的逻辑回归问题,输出的结果为wTx。
      • “count:poisson”, 计数问题的poisson回归,输出结果为poisson分布。
        在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
      • “multi:softmax”, 让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)
      • “multi:softprob”, 和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。没行数据表示样本所属于每个类别的概率。
      • “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss
        base_score [ default=0.5 ]
        the initial prediction score of all instances, global bias
    • eval_metric: [默认和objective相关],校验数据所需要的评价指标,不同的目标函数将会有缺省的评价指标(rmse for regression, and error for classification, mean average precision for ranking),用户可以添加多种评价指标,对于Python用户要以list传递参数对给程序,而不是map参数list参数不会覆盖
      • ’eval_metric’,可选参数如下:
        • “rmse”: root mean square error,均方根误差
        • “logloss”: negative log-likelihood,对数似然
        • “error”: Binary classification error rate,二值误差率,计算方法为误分样本/总样本
        • “merror”: Multiclass classification error rate,多分类误差率,计算方法同上
        • “auc”: Area under the curve for ranking evaluation.
        • “ndcg”:Normalized Discounted Cumulative Gain
        • “map”:Mean average precision
        • “ndcg@n”,”map@n”: n can be assigned as an integer to cut off the top positions in the lists for evaluation.
        • “ndcg-“,”map-“,”ndcg@n-“,”map@n-“: In XGBoost, NDCG and MAP will evaluate the score of a list without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these score as 0 to be consistent under some conditions.
          training repeatively
      • seed: [default=0], 随机数的种子。缺省值为0

2. xgboost的基本使用方法

import xgboost as xgb# 在这里设置需要的参数gbm = xgb.XGBClassifier(max_depth=3, n_estimators=300, learning_rate=0.05)# 传入训练集gbm = fit(train_X, train_y)# 预测predictions = gbm.predict(test_X)

Kaggle竞赛上一个例子

https://www.kaggle.com/cbrogan/xgboost-example-python/code/code

# This script shows you how to make a submission using a few# useful Python libraries.# It gets a public leaderboard score of 0.76077.# Maybe you can tweak it and do better...?import pandas as pdimport xgboost as xgbfrom sklearn.preprocessing import LabelEncoderimport numpy as np# Load the datatrain_df = pd.read_csv('../input/train.csv', header=0)test_df = pd.read_csv('../input/test.csv', header=0)# We'll impute missing values using the median for numeric columns and the most# common value for string columns.# This is based on some nice code by 'sveitser' at http://stackoverflow.com/a/25562948from sklearn.base import TransformerMixinclass DataFrameImputer(TransformerMixin):    def fit(self, X, y=None):        self.fill = pd.Series([X[c].value_counts().index[0]            if X[c].dtype == np.dtype('O') else X[c].median() for c in X],            index=X.columns)        return self    def transform(self, X, y=None):        return X.fillna(self.fill)feature_columns_to_use = ['Pclass','Sex','Age','Fare','Parch']nonnumeric_columns = ['Sex']# Join the features from train and test together before imputing missing values,# in case their distribution is slightly differentbig_X = train_df[feature_columns_to_use].append(test_df[feature_columns_to_use])big_X_imputed = DataFrameImputer().fit_transform(big_X)# XGBoost doesn't (yet) handle categorical features automatically, so we need to change# them to columns of integer values.# See http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing for more# details and optionsle = LabelEncoder()for feature in nonnumeric_columns:    big_X_imputed[feature] = le.fit_transform(big_X_imputed[feature])# Prepare the inputs for the modeltrain_X = big_X_imputed[0:train_df.shape[0]].as_matrix()test_X = big_X_imputed[train_df.shape[0]::].as_matrix()train_y = train_df['Survived']# You can experiment with many other options here, using the same .fit() and .predict()# methods; see http://scikit-learn.org# This example uses the current build of XGBoost, from https://github.com/dmlc/xgboostgbm = xgb.XGBClassifier(max_depth=3, n_estimators=300, learning_rate=0.05).fit(train_X, train_y)predictions = gbm.predict(test_X)# Kaggle needs the submission to have a certain format;# see https://www.kaggle.com/c/titanic-gettingStarted/download/gendermodel.csv# for an example of what it's supposed to look like.submission = pd.DataFrame({ 'PassengerId': test_df['PassengerId'],                            'Survived': predictions })submission.to_csv("submission.csv", index=False)