redis-3.0 主从复制

来源:互联网 发布:linux 查看caffe版本 编辑:程序博客网 时间:2024/06/05 14:05

说明这里使用的Redis版本是redis-3.0.4.tar.gz


1、架构说明


一个maser和两个slaver

[plain] view plain copy
print?
  1. master:127.0.0.1  端口:6379  
  2. slaver :127.0.0.1   端口:6380  
  3. slaver :127.0.0.1   端口:6381  
master:127.0.0.1  端口:6379slaver :127.0.0.1   端口:6380slaver :127.0.0.1   端口:6381


2、redis的配置


2.1、创建配置目录


在目录 /my_soft/my_config/redis/ 创建3个目录6379、6380、6381



2.2、修改 redis.conf


基础配置

[plain] view plain copy
print?
  1. daemonize yes  
  2. appendonly yes  
daemonize yesappendonly yes

通用配置
[plain] view plain copy
print?
  1. pidfile ”/var/run/redis_6379.pid”  
  2. port 6379  
  3. logfile ”/my_soft/my_config/redis/6379/6379.log”  
  4. dbfilename “dump_6379.rdb”  
  5. dir ”/my_soft/my_config/redis/6379/”  
pidfile "/var/run/redis_6379.pid"port 6379logfile "/my_soft/my_config/redis/6379/6379.log"dbfilename "dump_6379.rdb"dir "/my_soft/my_config/redis/6379/"

对6380、6381的配置

在6379的基础上,将redis.conf的中的6379全部替换成6380和6381即可。


3、启动redis的服务


3.1、启动三个redis的服务


[plain] view plain copy
print?
  1. /usr/local/bin/redis-server  /my_soft/my_config/redis/6379/redis.conf  
  2. /usr/local/bin/redis-server  /my_soft/my_config/redis/6380/redis.conf  
  3. /usr/local/bin/redis-server  /my_soft/my_config/redis/6381/redis.conf  
/usr/local/bin/redis-server  /my_soft/my_config/redis/6379/redis.conf/usr/local/bin/redis-server  /my_soft/my_config/redis/6380/redis.conf/usr/local/bin/redis-server  /my_soft/my_config/redis/6381/redis.conf

3.2、通过命令行查看当前redis的状态:

[plain] view plain copy
print?
  1. /usr/local/bin/redis-cli -p 6379  
  2.   
  3. /usr/local/bin/redis-cli -p 6380  
  4.   
  5. /usr/local/bin/redis-cli -p 6381  
/usr/local/bin/redis-cli -p 6379/usr/local/bin/redis-cli -p 6380/usr/local/bin/redis-cli -p 6381
常用的命令有:

ping        ## 查看是否ping通

info replication   ## 查看redis的从属关系


4、设置从属关系


4.1、对于6380设置从属关系

进入命令行:

[plain] view plain copy
print?
  1. /usr/local/bin/redis-cli -p 6380  
/usr/local/bin/redis-cli -p 6380

查看当前redis的状态:

[plain] view plain copy
print?
  1. info replication  
info replication

设置从属关系:

[plain] view plain copy
print?
  1. slaveof 127.0.0.1 6379  
slaveof 127.0.0.1 6379

4.2、对于6381设置从属关系

进入命令行:

[plain] view plain copy
print?
  1. /usr/local/bin/redis-cli -p 6381  
/usr/local/bin/redis-cli -p 6381

查看当前redis的状态:

[plain] view plain copy
print?
  1. info replication  
info replication

设置从属关系:
[plain] view plain copy
print?
  1. slaveof 127.0.0.1 6379  
slaveof 127.0.0.1 6379

其他命令说明:
取消主从关系的命令
[plain] view plain copy
print?
  1. slaveof  no  one  
slaveof  no  one


master死了,slaver原地待命,
master 恢复后,主机依然是主机


slaver从机死了,再重启,
如果 slaveof 的配置是写在redis.conf中的,那仍然可以恢复主从关系
如果 slaveof 的配置是通过命令设置的,在使用 slaveof 命令行之前是只是一个独立的主机;
使用slaveof 命令行之后,可恢复主从关系


==========================   完 ===============================================

附6379的redis.conf配置

[plain] view plain copy
print?
  1. # Redis configuration file example  
  2.   
  3. # Note on units: when memory size is needed, it is possible to specify  
  4. # it in the usual form of 1k 5GB 4M and so forth:  
  5. #  
  6. # 1k => 1000 bytes  
  7. # 1kb => 1024 bytes  
  8. # 1m => 1000000 bytes  
  9. # 1mb => 1024*1024 bytes  
  10. # 1g => 1000000000 bytes  
  11. # 1gb => 1024*1024*1024 bytes  
  12. #  
  13. # units are case insensitive so 1GB 1Gb 1gB are all the same.  
  14.   
  15. ################################## INCLUDES ###################################  
  16.   
  17. # Include one or more other config files here.  This is useful if you  
  18. # have a standard template that goes to all Redis servers but also need  
  19. # to customize a few per-server settings.  Include files can include  
  20. # other files, so use this wisely.  
  21. #  
  22. # Notice option “include” won’t be rewritten by command “CONFIG REWRITE”  
  23. # from admin or Redis Sentinel. Since Redis always uses the last processed  
  24. # line as value of a configuration directive, you’d better put includes  
  25. # at the beginning of this file to avoid overwriting config change at runtime.  
  26. #  
  27. # If instead you are interested in using includes to override configuration  
  28. # options, it is better to use include as the last line.  
  29. #  
  30. # include /path/to/local.conf  
  31. # include /path/to/other.conf  
  32.   
  33. ################################ GENERAL  #####################################  
  34.   
  35. # By default Redis does not run as a daemon. Use ‘yes’ if you need it.  
  36. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.  
  37. daemonize yes  
  38.   
  39. # When running daemonized, Redis writes a pid file in /var/run/redis.pid by  
  40. # default. You can specify a custom pid file location here.  
  41.   
  42. pidfile ”/var/run/redis_6379.pid”  
  43.   
  44. # Accept connections on the specified port, default is 6379.  
  45. # If port 0 is specified Redis will not listen on a TCP socket.  
  46. port 6379  
  47.   
  48. # TCP listen() backlog.  
  49. #  
  50. # In high requests-per-second environments you need an high backlog in order  
  51. # to avoid slow clients connections issues. Note that the Linux kernel  
  52. # will silently truncate it to the value of /proc/sys/net/core/somaxconn so  
  53. # make sure to raise both the value of somaxconn and tcp_max_syn_backlog  
  54. # in order to get the desired effect.  
  55. tcp-backlog 511  
  56.   
  57. # By default Redis listens for connections from all the network interfaces  
  58. # available on the server. It is possible to listen to just one or multiple  
  59. # interfaces using the “bind” configuration directive, followed by one or  
  60. # more IP addresses.  
  61. #  
  62. # Examples:  
  63. #  
  64. # bind 192.168.1.100 10.0.0.1  
  65. # bind 127.0.0.1  
  66.   
  67. # Specify the path for the Unix socket that will be used to listen for  
  68. # incoming connections. There is no default, so Redis will not listen  
  69. # on a unix socket when not specified.  
  70. #  
  71. # unixsocket /tmp/redis.sock  
  72. # unixsocketperm 700  
  73.   
  74. # Close the connection after a client is idle for N seconds (0 to disable)  
  75. timeout 0  
  76.   
  77. # TCP keepalive.  
  78. #  
  79. # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence  
  80. # of communication. This is useful for two reasons:  
  81. #  
  82. # 1) Detect dead peers.  
  83. # 2) Take the connection alive from the point of view of network  
  84. #    equipment in the middle.  
  85. #  
  86. # On Linux, the specified value (in seconds) is the period used to send ACKs.  
  87. # Note that to close the connection the double of the time is needed.  
  88. # On other kernels the period depends on the kernel configuration.  
  89. #  
  90. # A reasonable value for this option is 60 seconds.  
  91. tcp-keepalive 0  
  92.   
  93. # Specify the server verbosity level.  
  94. # This can be one of:  
  95. # debug (a lot of information, useful for development/testing)  
  96. # verbose (many rarely useful info, but not a mess like the debug level)  
  97. # notice (moderately verbose, what you want in production probably)  
  98. # warning (only very important / critical messages are logged)  
  99. loglevel notice  
  100.   
  101. # Specify the log file name. Also the empty string can be used to force  
  102. # Redis to log on the standard output. Note that if you use standard  
  103. # output for logging but daemonize, logs will be sent to /dev/null  
  104.   
  105. logfile ”/my_soft/my_config/redis/6379/6379.log”  
  106.   
  107. # To enable logging to the system logger, just set ‘syslog-enabled’ to yes,  
  108. # and optionally update the other syslog parameters to suit your needs.  
  109. # syslog-enabled no  
  110.   
  111. # Specify the syslog identity.  
  112. # syslog-ident redis  
  113.   
  114. # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.  
  115. # syslog-facility local0  
  116.   
  117. # Set the number of databases. The default database is DB 0, you can select  
  118. # a different one on a per-connection basis using SELECT <dbid> where  
  119. # dbid is a number between 0 and ‘databases’-1  
  120. databases 16  
  121.   
  122. ################################ SNAPSHOTTING  ################################  
  123. #  
  124. # Save the DB on disk:  
  125. #  
  126. #   save <seconds> <changes>  
  127. #  
  128. #   Will save the DB if both the given number of seconds and the given  
  129. #   number of write operations against the DB occurred.  
  130. #  
  131. #   In the example below the behaviour will be to save:  
  132. #   after 900 sec (15 min) if at least 1 key changed  
  133. #   after 300 sec (5 min) if at least 10 keys changed  
  134. #   after 60 sec if at least 10000 keys changed  
  135. #  
  136. #   Note: you can disable saving completely by commenting out all “save” lines.  
  137. #  
  138. #   It is also possible to remove all the previously configured save  
  139. #   points by adding a save directive with a single empty string argument  
  140. #   like in the following example:  
  141. #  
  142. #   save ”“  
  143.   
  144. save 900 1  
  145. save 300 10  
  146. save 60 10000  
  147.   
  148. # By default Redis will stop accepting writes if RDB snapshots are enabled  
  149. # (at least one save point) and the latest background save failed.  
  150. # This will make the user aware (in a hard way) that data is not persisting  
  151. # on disk properly, otherwise chances are that no one will notice and some  
  152. # disaster will happen.  
  153. #  
  154. # If the background saving process will start working again Redis will  
  155. # automatically allow writes again.  
  156. #  
  157. # However if you have setup your proper monitoring of the Redis server  
  158. # and persistence, you may want to disable this feature so that Redis will  
  159. # continue to work as usual even if there are problems with disk,  
  160. # permissions, and so forth.  
  161. stop-writes-on-bgsave-error yes  
  162.   
  163. # Compress string objects using LZF when dump .rdb databases?  
  164. # For default that’s set to ‘yes’ as it’s almost always a win.  
  165. # If you want to save some CPU in the saving child set it to ‘no’ but  
  166. # the dataset will likely be bigger if you have compressible values or keys.  
  167. rdbcompression yes  
  168.   
  169. # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.  
  170. # This makes the format more resistant to corruption but there is a performance  
  171. # hit to pay (around 10%) when saving and loading RDB files, so you can disable it  
  172. # for maximum performances.  
  173. #  
  174. # RDB files created with checksum disabled have a checksum of zero that will  
  175. # tell the loading code to skip the check.  
  176. rdbchecksum yes  
  177.   
  178. # The filename where to dump the DB  
  179. dbfilename “dump_6379.rdb”  
  180.   
  181. # The working directory.  
  182. #  
  183. # The DB will be written inside this directory, with the filename specified  
  184. # above using the ‘dbfilename’ configuration directive.  
  185. #  
  186. # The Append Only File will also be created inside this directory.  
  187. #  
  188. # Note that you must specify a directory here, not a file name.  
  189. dir ”/my_soft/my_config/redis/6379/”  
  190.   
  191. ################################# REPLICATION #################################  
  192.   
  193. # Master-Slave replication. Use slaveof to make a Redis instance a copy of  
  194. # another Redis server. A few things to understand ASAP about Redis replication.  
  195. #  
  196. # 1) Redis replication is asynchronous, but you can configure a master to  
  197. #    stop accepting writes if it appears to be not connected with at least  
  198. #    a given number of slaves.  
  199. # 2) Redis slaves are able to perform a partial resynchronization with the  
  200. #    master if the replication link is lost for a relatively small amount of  
  201. #    time. You may want to configure the replication backlog size (see the next  
  202. #    sections of this file) with a sensible value depending on your needs.  
  203. # 3) Replication is automatic and does not need user intervention. After a  
  204. #    network partition slaves automatically try to reconnect to masters  
  205. #    and resynchronize with them.  
  206. #  
  207. # slaveof <masterip> <masterport>  
  208.   
  209. # If the master is password protected (using the “requirepass” configuration  
  210. # directive below) it is possible to tell the slave to authenticate before  
  211. # starting the replication synchronization process, otherwise the master will  
  212. # refuse the slave request.  
  213. #  
  214. # masterauth <master-password>  
  215.   
  216. # When a slave loses its connection with the master, or when the replication  
  217. # is still in progress, the slave can act in two different ways:  
  218. #  
  219. # 1) if slave-serve-stale-data is set to ‘yes’ (the default) the slave will  
  220. #    still reply to client requests, possibly with out of date data, or the  
  221. #    data set may just be empty if this is the first synchronization.  
  222. #  
  223. # 2) if slave-serve-stale-data is set to ‘no’ the slave will reply with  
  224. #    an error “SYNC with master in progress” to all the kind of commands  
  225. #    but to INFO and SLAVEOF.  
  226. #  
  227. slave-serve-stale-data yes  
  228.   
  229. # You can configure a slave instance to accept writes or not. Writing against  
  230. # a slave instance may be useful to store some ephemeral data (because data  
  231. # written on a slave will be easily deleted after resync with the master) but  
  232. # may also cause problems if clients are writing to it because of a  
  233. # misconfiguration.  
  234. #  
  235. # Since Redis 2.6 by default slaves are read-only.  
  236. #  
  237. # Note: read only slaves are not designed to be exposed to untrusted clients  
  238. # on the internet. It’s just a protection layer against misuse of the instance.  
  239. # Still a read only slave exports by default all the administrative commands  
  240. # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve  
  241. # security of read only slaves using ‘rename-command’ to shadow all the  
  242. # administrative / dangerous commands.  
  243. slave-read-only yes  
  244.   
  245. # Replication SYNC strategy: disk or socket.  
  246. #  
  247. # ——————————————————-  
  248. # WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY  
  249. # ——————————————————-  
  250. #  
  251. # New slaves and reconnecting slaves that are not able to continue the replication  
  252. # process just receiving differences, need to do what is called a “full  
  253. # synchronization”. An RDB file is transmitted from the master to the slaves.  
  254. # The transmission can happen in two different ways:  
  255. #  
  256. # 1) Disk-backed: The Redis master creates a new process that writes the RDB  
  257. #                 file on disk. Later the file is transferred by the parent  
  258. #                 process to the slaves incrementally.  
  259. # 2) Diskless: The Redis master creates a new process that directly writes the  
  260. #              RDB file to slave sockets, without touching the disk at all.  
  261. #  
  262. # With disk-backed replication, while the RDB file is generated, more slaves  
  263. # can be queued and served with the RDB file as soon as the current child producing  
  264. # the RDB file finishes its work. With diskless replication instead once  
  265. # the transfer starts, new slaves arriving will be queued and a new transfer  
  266. # will start when the current one terminates.  
  267. #  
  268. # When diskless replication is used, the master waits a configurable amount of  
  269. # time (in seconds) before starting the transfer in the hope that multiple slaves  
  270. # will arrive and the transfer can be parallelized.  
  271. #  
  272. # With slow disks and fast (large bandwidth) networks, diskless replication  
  273. # works better.  
  274. repl-diskless-sync no  
  275.   
  276. # When diskless replication is enabled, it is possible to configure the delay  
  277. # the server waits in order to spawn the child that transfers the RDB via socket  
  278. # to the slaves.  
  279. #  
  280. # This is important since once the transfer starts, it is not possible to serve  
  281. # new slaves arriving, that will be queued for the next RDB transfer, so the server  
  282. # waits a delay in order to let more slaves arrive.  
  283. #  
  284. # The delay is specified in seconds, and by default is 5 seconds. To disable  
  285. # it entirely just set it to 0 seconds and the transfer will start ASAP.  
  286. repl-diskless-sync-delay 5  
  287.   
  288. # Slaves send PINGs to server in a predefined interval. It’s possible to change  
  289. # this interval with the repl_ping_slave_period option. The default value is 10  
  290. # seconds.  
  291. #  
  292. # repl-ping-slave-period 10  
  293.   
  294. # The following option sets the replication timeout for:  
  295. #  
  296. # 1) Bulk transfer I/O during SYNC, from the point of view of slave.  
  297. # 2) Master timeout from the point of view of slaves (data, pings).  
  298. # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).  
  299. #  
  300. # It is important to make sure that this value is greater than the value  
  301. # specified for repl-ping-slave-period otherwise a timeout will be detected  
  302. # every time there is low traffic between the master and the slave.  
  303. #  
  304. # repl-timeout 60  
  305.   
  306. # Disable TCP_NODELAY on the slave socket after SYNC?  
  307. #  
  308. # If you select “yes” Redis will use a smaller number of TCP packets and  
  309. # less bandwidth to send data to slaves. But this can add a delay for  
  310. # the data to appear on the slave side, up to 40 milliseconds with  
  311. # Linux kernels using a default configuration.  
  312. #  
  313. # If you select “no” the delay for data to appear on the slave side will  
  314. # be reduced but more bandwidth will be used for replication.  
  315. #  
  316. # By default we optimize for low latency, but in very high traffic conditions  
  317. # or when the master and slaves are many hops away, turning this to “yes” may  
  318. # be a good idea.  
  319. repl-disable-tcp-nodelay no  
  320.   
  321. # Set the replication backlog size. The backlog is a buffer that accumulates  
  322. # slave data when slaves are disconnected for some time, so that when a slave  
  323. # wants to reconnect again, often a full resync is not needed, but a partial  
  324. # resync is enough, just passing the portion of data the slave missed while  
  325. # disconnected.  
  326. #  
  327. # The bigger the replication backlog, the longer the time the slave can be  
  328. # disconnected and later be able to perform a partial resynchronization.  
  329. #  
  330. # The backlog is only allocated once there is at least a slave connected.  
  331. #  
  332. # repl-backlog-size 1mb  
  333.   
  334. # After a master has no longer connected slaves for some time, the backlog  
  335. # will be freed. The following option configures the amount of seconds that  
  336. # need to elapse, starting from the time the last slave disconnected, for  
  337. # the backlog buffer to be freed.  
  338. #  
  339. # A value of 0 means to never release the backlog.  
  340. #  
  341. # repl-backlog-ttl 3600  
  342.   
  343. # The slave priority is an integer number published by Redis in the INFO output.  
  344. # It is used by Redis Sentinel in order to select a slave to promote into a  
  345. # master if the master is no longer working correctly.  
  346. #  
  347. # A slave with a low priority number is considered better for promotion, so  
  348. # for instance if there are three slaves with priority 10, 100, 25 Sentinel will  
  349. # pick the one with priority 10, that is the lowest.  
  350. #  
  351. # However a special priority of 0 marks the slave as not able to perform the  
  352. # role of master, so a slave with priority of 0 will never be selected by  
  353. # Redis Sentinel for promotion.  
  354. #  
  355. # By default the priority is 100.  
  356. slave-priority 100  
  357.   
  358. # It is possible for a master to stop accepting writes if there are less than  
  359. # N slaves connected, having a lag less or equal than M seconds.  
  360. #  
  361. # The N slaves need to be in “online” state.  
  362. #  
  363. # The lag in seconds, that must be <= the specified value, is calculated from  
  364. # the last ping received from the slave, that is usually sent every second.  
  365. #  
  366. # This option does not GUARANTEE that N replicas will accept the write, but  
  367. # will limit the window of exposure for lost writes in case not enough slaves  
  368. # are available, to the specified number of seconds.  
  369. #  
  370. # For example to require at least 3 slaves with a lag <= 10 seconds use:  
  371. #  
  372. # min-slaves-to-write 3  
  373. # min-slaves-max-lag 10  
  374. #  
  375. # Setting one or the other to 0 disables the feature.  
  376. #  
  377. # By default min-slaves-to-write is set to 0 (feature disabled) and  
  378. # min-slaves-max-lag is set to 10.  
  379.   
  380. ################################## SECURITY ###################################  
  381.   
  382. # Require clients to issue AUTH <PASSWORD> before processing any other  
  383. # commands.  This might be useful in environments in which you do not trust  
  384. # others with access to the host running redis-server.  
  385. #  
  386. # This should stay commented out for backward compatibility and because most  
  387. # people do not need auth (e.g. they run their own servers).  
  388. #  
  389. # Warning: since Redis is pretty fast an outside user can try up to  
  390. # 150k passwords per second against a good box. This means that you should  
  391. # use a very strong password otherwise it will be very easy to break.  
  392. #  
  393. # requirepass foobared  
  394.   
  395. # Command renaming.  
  396. #  
  397. # It is possible to change the name of dangerous commands in a shared  
  398. # environment. For instance the CONFIG command may be renamed into something  
  399. # hard to guess so that it will still be available for internal-use tools  
  400. # but not available for general clients.  
  401. #  
  402. # Example:  
  403. #  
  404. # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52  
  405. #  
  406. # It is also possible to completely kill a command by renaming it into  
  407. # an empty string:  
  408. #  
  409. # rename-command CONFIG ”“  
  410. #  
  411. # Please note that changing the name of commands that are logged into the  
  412. # AOF file or transmitted to slaves may cause problems.  
  413.   
  414. ################################### LIMITS ####################################  
  415.   
  416. # Set the max number of connected clients at the same time. By default  
  417. # this limit is set to 10000 clients, however if the Redis server is not  
  418. # able to configure the process file limit to allow for the specified limit  
  419. # the max number of allowed clients is set to the current file limit  
  420. # minus 32 (as Redis reserves a few file descriptors for internal uses).  
  421. #  
  422. # Once the limit is reached Redis will close all the new connections sending  
  423. # an error ‘max number of clients reached’.  
  424. #  
  425. # maxclients 10000  
  426.   
  427. # Don’t use more memory than the specified amount of bytes.  
  428. # When the memory limit is reached Redis will try to remove keys  
  429. # according to the eviction policy selected (see maxmemory-policy).  
  430. #  
  431. # If Redis can’t remove keys according to the policy, or if the policy is  
  432. # set to ‘noeviction’, Redis will start to reply with errors to commands  
  433. # that would use more memory, like SET, LPUSH, and so on, and will continue  
  434. # to reply to read-only commands like GET.  
  435. #  
  436. # This option is usually useful when using Redis as an LRU cache, or to set  
  437. # a hard memory limit for an instance (using the ‘noeviction’ policy).  
  438. #  
  439. # WARNING: If you have slaves attached to an instance with maxmemory on,  
  440. # the size of the output buffers needed to feed the slaves are subtracted  
  441. # from the used memory count, so that network problems / resyncs will  
  442. # not trigger a loop where keys are evicted, and in turn the output  
  443. # buffer of slaves is full with DELs of keys evicted triggering the deletion  
  444. # of more keys, and so forth until the database is completely emptied.  
  445. #  
  446. # In short… if you have slaves attached it is suggested that you set a lower  
  447. # limit for maxmemory so that there is some free RAM on the system for slave  
  448. # output buffers (but this is not needed if the policy is ‘noeviction’).  
  449. #  
  450. # maxmemory <bytes>  
  451.   
  452. # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory  
  453. # is reached. You can select among five behaviors:  
  454. #  
  455. # volatile-lru -> remove the key with an expire set using an LRU algorithm  
  456. # allkeys-lru -> remove any key according to the LRU algorithm  
  457. # volatile-random -> remove a random key with an expire set  
  458. # allkeys-random -> remove a random key, any key  
  459. # volatile-ttl -> remove the key with the nearest expire time (minor TTL)  
  460. # noeviction -> don’t expire at all, just return an error on write operations  
  461. #  
  462. # Note: with any of the above policies, Redis will return an error on write  
  463. #       operations, when there are no suitable keys for eviction.  
  464. #  
  465. #       At the date of writing these commands are: set setnx setex append  
  466. #       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd  
  467. #       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby  
  468. #       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby  
  469. #       getset mset msetnx exec sort  
  470. #  
  471. # The default is:  
  472. #  
  473. # maxmemory-policy noeviction  
  474.   
  475. # LRU and minimal TTL algorithms are not precise algorithms but approximated  
  476. # algorithms (in order to save memory), so you can tune it for speed or  
  477. # accuracy. For default Redis will check five keys and pick the one that was  
  478. # used less recently, you can change the sample size using the following  
  479. # configuration directive.  
  480. #  
  481. # The default of 5 produces good enough results. 10 Approximates very closely  
  482. # true LRU but costs a bit more CPU. 3 is very fast but not very accurate.  
  483. #  
  484. # maxmemory-samples 5  
  485.   
  486. ############################## APPEND ONLY MODE ###############################  
  487.   
  488. # By default Redis asynchronously dumps the dataset on disk. This mode is  
  489. # good enough in many applications, but an issue with the Redis process or  
  490. # a power outage may result into a few minutes of writes lost (depending on  
  491. # the configured save points).  
  492. #  
  493. # The Append Only File is an alternative persistence mode that provides  
  494. # much better durability. For instance using the default data fsync policy  
  495. # (see later in the config file) Redis can lose just one second of writes in a  
  496. # dramatic event like a server power outage, or a single write if something  
  497. # wrong with the Redis process itself happens, but the operating system is  
  498. # still running correctly.  
  499. #  
  500. # AOF and RDB persistence can be enabled at the same time without problems.  
  501. # If the AOF is enabled on startup Redis will load the AOF, that is the file  
  502. # with the better durability guarantees.  
  503. #  
  504. # Please check http://redis.io/topics/persistence for more information.  
  505.   
  506. appendonly yes  
  507.   
  508. # The name of the append only file (default: “appendonly.aof”)  
  509.   
  510. appendfilename “appendonly.aof”  
  511.   
  512. # The fsync() call tells the Operating System to actually write data on disk  
  513. # instead of waiting for more data in the output buffer. Some OS will really flush  
  514. # data on disk, some other OS will just try to do it ASAP.  
  515. #  
  516. # Redis supports three different modes:  
  517. #  
  518. # no: don’t fsync, just let the OS flush the data when it wants. Faster.  
  519. # always: fsync after every write to the append only log. Slow, Safest.  
  520. # everysec: fsync only one time every second. Compromise.  
  521. #  
  522. # The default is “everysec”, as that’s usually the right compromise between  
  523. # speed and data safety. It’s up to you to understand if you can relax this to  
  524. # “no” that will let the operating system flush the output buffer when  
  525. # it wants, for better performances (but if you can live with the idea of  
  526. # some data loss consider the default persistence mode that’s snapshotting),  
  527. # or on the contrary, use “always” that’s very slow but a bit safer than  
  528. # everysec.  
  529. #  
  530. # More details please check the following article:  
  531. # http://antirez.com/post/redis-persistence-demystified.html  
  532. #  
  533. # If unsure, use “everysec”.  
  534.   
  535. # appendfsync always  
  536. appendfsync everysec  
  537. # appendfsync no  
  538.   
  539. # When the AOF fsync policy is set to always or everysec, and a background  
  540. # saving process (a background save or AOF log background rewriting) is  
  541. # performing a lot of I/O against the disk, in some Linux configurations  
  542. # Redis may block too long on the fsync() call. Note that there is no fix for  
  543. # this currently, as even performing fsync in a different thread will block  
  544. # our synchronous write(2) call.  
  545. #  
  546. # In order to mitigate this problem it’s possible to use the following option  
  547. # that will prevent fsync() from being called in the main process while a  
  548. # BGSAVE or BGREWRITEAOF is in progress.  
  549. #  
  550. # This means that while another child is saving, the durability of Redis is  
  551. # the same as “appendfsync none”. In practical terms, this means that it is  
  552. # possible to lose up to 30 seconds of log in the worst scenario (with the  
  553. # default Linux settings).  
  554. #  
  555. # If you have latency problems turn this to “yes”. Otherwise leave it as  
  556. # “no” that is the safest pick from the point of view of durability.  
  557.   
  558. no-appendfsync-on-rewrite no  
  559.   
  560. # Automatic rewrite of the append only file.  
  561. # Redis is able to automatically rewrite the log file implicitly calling  
  562. # BGREWRITEAOF when the AOF log size grows by the specified percentage.  
  563. #  
  564. # This is how it works: Redis remembers the size of the AOF file after the  
  565. # latest rewrite (if no rewrite has happened since the restart, the size of  
  566. # the AOF at startup is used).  
  567. #  
  568. # This base size is compared to the current size. If the current size is  
  569. # bigger than the specified percentage, the rewrite is triggered. Also  
  570. # you need to specify a minimal size for the AOF file to be rewritten, this  
  571. # is useful to avoid rewriting the AOF file even if the percentage increase  
  572. # is reached but it is still pretty small.  
  573. #  
  574. # Specify a percentage of zero in order to disable the automatic AOF  
  575. # rewrite feature.  
  576.   
  577. auto-aof-rewrite-percentage 100  
  578. auto-aof-rewrite-min-size 64mb  
  579.   
  580. # An AOF file may be found to be truncated at the end during the Redis  
  581. # startup process, when the AOF data gets loaded back into memory.  
  582. # This may happen when the system where Redis is running  
  583. # crashes, especially when an ext4 filesystem is mounted without the  
  584. # data=ordered option (however this can’t happen when Redis itself  
  585. # crashes or aborts but the operating system still works correctly).  
  586. #  
  587. # Redis can either exit with an error when this happens, or load as much  
  588. # data as possible (the default now) and start if the AOF file is found  
  589. # to be truncated at the end. The following option controls this behavior.  
  590. #  
  591. # If aof-load-truncated is set to yes, a truncated AOF file is loaded and  
  592. # the Redis server starts emitting a log to inform the user of the event.  
  593. # Otherwise if the option is set to no, the server aborts with an error  
  594. # and refuses to start. When the option is set to no, the user requires  
  595. # to fix the AOF file using the “redis-check-aof” utility before to restart  
  596. # the server.  
  597. #  
  598. # Note that if the AOF file will be found to be corrupted in the middle  
  599. # the server will still exit with an error. This option only applies when  
  600. # Redis will try to read more data from the AOF file but not enough bytes  
  601. # will be found.  
  602. aof-load-truncated yes  
  603.   
  604. ################################ LUA SCRIPTING  ###############################  
  605.   
  606. # Max execution time of a Lua script in milliseconds.  
  607. #  
  608. # If the maximum execution time is reached Redis will log that a script is  
  609. # still in execution after the maximum allowed time and will start to  
  610. # reply to queries with an error.  
  611. #  
  612. # When a long running script exceeds the maximum execution time only the  
  613. # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be  
  614. # used to stop a script that did not yet called write commands. The second  
  615. # is the only way to shut down the server in the case a write command was  
  616. # already issued by the script but the user doesn’t want to wait for the natural  
  617. # termination of the script.  
  618. #  
  619. # Set it to 0 or a negative value for unlimited execution without warnings.  
  620. lua-time-limit 5000  
  621.   
  622. ################################ REDIS CLUSTER  ###############################  
  623. #  
  624. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
  625. # WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however  
  626. # in order to mark it as “mature” we need to wait for a non trivial percentage  
  627. # of users to deploy it in production.  
  628. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++  
  629. #  
  630. # Normal Redis instances can’t be part of a Redis Cluster; only nodes that are  
  631. # started as cluster nodes can. In order to start a Redis instance as a  
  632. # cluster node enable the cluster support uncommenting the following:  
  633. #  
  634. # cluster-enabled yes  
  635.   
  636. # Every cluster node has a cluster configuration file. This file is not  
  637. # intended to be edited by hand. It is created and updated by Redis nodes.  
  638. # Every Redis Cluster node requires a different cluster configuration file.  
  639. # Make sure that instances running in the same system do not have  
  640. # overlapping cluster configuration file names.  
  641. #  
  642. # cluster-config-file nodes-6379.conf  
  643.   
  644. # Cluster node timeout is the amount of milliseconds a node must be unreachable  
  645. # for it to be considered in failure state.  
  646. # Most other internal time limits are multiple of the node timeout.  
  647. #  
  648. # cluster-node-timeout 15000  
  649.   
  650. # A slave of a failing master will avoid to start a failover if its data  
  651. # looks too old.  
  652. #  
  653. # There is no simple way for a slave to actually have a exact measure of  
  654. # its “data age”, so the following two checks are performed:  
  655. #  
  656. # 1) If there are multiple slaves able to failover, they exchange messages  
  657. #    in order to try to give an advantage to the slave with the best  
  658. #    replication offset (more data from the master processed).  
  659. #    Slaves will try to get their rank by offset, and apply to the start  
  660. #    of the failover a delay proportional to their rank.  
  661. #  
  662. # 2) Every single slave computes the time of the last interaction with  
  663. #    its master. This can be the last ping or command received (if the master  
  664. #    is still in the “connected” state), or the time that elapsed since the  
  665. #    disconnection with the master (if the replication link is currently down).  
  666. #    If the last interaction is too old, the slave will not try to failover  
  667. #    at all.  
  668. #  
  669. # The point “2” can be tuned by user. Specifically a slave will not perform  
  670. # the failover if, since the last interaction with the master, the time  
  671. # elapsed is greater than:  
  672. #  
  673. #   (node-timeout * slave-validity-factor) + repl-ping-slave-period  
  674. #  
  675. # So for example if node-timeout is 30 seconds, and the slave-validity-factor  
  676. # is 10, and assuming a default repl-ping-slave-period of 10 seconds, the  
  677. # slave will not try to failover if it was not able to talk with the master  
  678. # for longer than 310 seconds.  
  679. #  
  680. # A large slave-validity-factor may allow slaves with too old data to failover  
  681. # a master, while a too small value may prevent the cluster from being able to  
  682. # elect a slave at all.  
  683. #  
  684. # For maximum availability, it is possible to set the slave-validity-factor  
  685. # to a value of 0, which means, that slaves will always try to failover the  
  686. # master regardless of the last time they interacted with the master.  
  687. # (However they’ll always try to apply a delay proportional to their  
  688. # offset rank).  
  689. #  
  690. # Zero is the only value able to guarantee that when all the partitions heal  
  691. # the cluster will always be able to continue.  
  692. #  
  693. # cluster-slave-validity-factor 10  
  694.   
  695. # Cluster slaves are able to migrate to orphaned masters, that are masters  
  696. # that are left without working slaves. This improves the cluster ability  
  697. # to resist to failures as otherwise an orphaned master can’t be failed over  
  698. # in case of failure if it has no working slaves.  
  699. #  
  700. # Slaves migrate to orphaned masters only if there are still at least a  
  701. # given number of other working slaves for their old master. This number  
  702. # is the “migration barrier”. A migration barrier of 1 means that a slave  
  703. # will migrate only if there is at least 1 other working slave for its master  
  704. # and so forth. It usually reflects the number of slaves you want for every  
  705. # master in your cluster.  
  706. #  
  707. # Default is 1 (slaves migrate only if their masters remain with at least  
  708. # one slave). To disable migration just set it to a very large value.  
  709. # A value of 0 can be set but is useful only for debugging and dangerous  
  710. # in production.  
  711. #  
  712. # cluster-migration-barrier 1  
  713.   
  714. # By default Redis Cluster nodes stop accepting queries if they detect there  
  715. # is at least an hash slot uncovered (no available node is serving it).  
  716. # This way if the cluster is partially down (for example a range of hash slots  
  717. # are no longer covered) all the cluster becomes, eventually, unavailable.  
  718. # It automatically returns available as soon as all the slots are covered again.  
  719. #  
  720. # However sometimes you want the subset of the cluster which is working,  
  721. # to continue to accept queries for the part of the key space that is still  
  722. # covered. In order to do so, just set the cluster-require-full-coverage  
  723. # option to no.  
  724. #  
  725. # cluster-require-full-coverage yes  
  726.   
  727. # In order to setup your cluster make sure to read the documentation  
  728. # available at http://redis.io web site.  
  729.   
  730. ################################## SLOW LOG ###################################  
  731.   
  732. # The Redis Slow Log is a system to log queries that exceeded a specified  
  733. # execution time. The execution time does not include the I/O operations  
  734. # like talking with the client, sending the reply and so forth,  
  735. # but just the time needed to actually execute the command (this is the only  
  736. # stage of command execution where the thread is blocked and can not serve  
  737. # other requests in the meantime).  
  738. #  
  739. # You can configure the slow log with two parameters: one tells Redis  
  740. # what is the execution time, in microseconds, to exceed in order for the  
  741. # command to get logged, and the other parameter is the length of the  
  742. # slow log. When a new command is logged the oldest one is removed from the  
  743. # queue of logged commands.  
  744.   
  745. # The following time is expressed in microseconds, so 1000000 is equivalent  
  746. # to one second. Note that a negative number disables the slow log, while  
  747. # a value of zero forces the logging of every command.  
  748. slowlog-log-slower-than 10000  
  749.   
  750. # There is no limit to this length. Just be aware that it will consume memory.  
  751. # You can reclaim memory used by the slow log with SLOWLOG RESET.  
  752. slowlog-max-len 128  
  753.   
  754. ################################ LATENCY MONITOR ##############################  
  755.   
  756. # The Redis latency monitoring subsystem samples different operations  
  757. # at runtime in order to collect data related to possible sources of  
  758. # latency of a Redis instance.  
  759. #  
  760. # Via the LATENCY command this information is available to the user that can  
  761. # print graphs and obtain reports.  
  762. #  
  763. # The system only logs operations that were performed in a time equal or  
  764. # greater than the amount of milliseconds specified via the  
  765. # latency-monitor-threshold configuration directive. When its value is set  
  766. # to zero, the latency monitor is turned off.  
  767. #  
  768. # By default latency monitoring is disabled since it is mostly not needed  
  769. # if you don’t have latency issues, and collecting data has a performance  
  770. # impact, that while very small, can be measured under big load. Latency  
  771. # monitoring can easily be enabled at runtime using the command  
  772. # “CONFIG SET latency-monitor-threshold <milliseconds>” if needed.  
  773. latency-monitor-threshold 0  
  774.   
  775. ############################# EVENT NOTIFICATION ##############################  
  776.   
  777. # Redis can notify Pub/Sub clients about events happening in the key space.  
  778. # This feature is documented at http://redis.io/topics/notifications  
  779. #  
  780. # For instance if keyspace events notification is enabled, and a client  
  781. # performs a DEL operation on key “foo” stored in the Database 0, two  
  782. # messages will be published via Pub/Sub:  
  783. #  
  784. # PUBLISH __keyspace@0__:foo del  
  785. # PUBLISH __keyevent@0__:del foo  
  786. #  
  787. # It is possible to select the events that Redis will notify among a set  
  788. # of classes. Every class is identified by a single character:  
  789. #  
  790. #  K     Keyspace events, published with __keyspace@<db>__ prefix.  
  791. #  E     Keyevent events, published with __keyevent@<db>__ prefix.  
  792. #  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, …  
  793. #  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;String&nbsp;commands&nbsp;&nbsp;</span></li><li class=""><span>#&nbsp;&nbsp;l&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;List&nbsp;commands&nbsp;&nbsp;</span></li><li class="alt"><span>#&nbsp;&nbsp;s&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set&nbsp;commands&nbsp;&nbsp;</span></li><li class=""><span>#&nbsp;&nbsp;h&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Hash&nbsp;commands&nbsp;&nbsp;</span></li><li class="alt"><span>#&nbsp;&nbsp;z&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sorted&nbsp;set&nbsp;commands&nbsp;&nbsp;</span></li><li class=""><span>#&nbsp;&nbsp;x&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Expired&nbsp;events&nbsp;(events&nbsp;generated&nbsp;every&nbsp;time&nbsp;a&nbsp;key&nbsp;expires)&nbsp;&nbsp;</span></li><li class="alt"><span>#&nbsp;&nbsp;e&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Evicted&nbsp;events&nbsp;(events&nbsp;generated&nbsp;when&nbsp;a&nbsp;key&nbsp;is&nbsp;evicted&nbsp;for&nbsp;maxmemory)&nbsp;&nbsp;</span></li><li class=""><span>#&nbsp;&nbsp;A&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Alias&nbsp;for&nbsp;glshzxe, so that the “AKE” string means all the events.  
  794. #  
  795. #  The “notify-keyspace-events” takes as argument a string that is composed  
  796. #  of zero or multiple characters. The empty string means that notifications  
  797. #  are disabled.  
  798. #  
  799. #  Example: to enable list and generic events, from the point of view of the  
  800. #           event name, use:  
  801. #  
  802. #  notify-keyspace-events Elg  
  803. #  
  804. #  Example 2: to get the stream of the expired keys subscribing to channel  
  805. #             name __keyevent@0__:expired use:  
  806. #  
  807. #  notify-keyspace-events Ex  
  808. #  
  809. #  By default all notifications are disabled because most users don’t need  
  810. #  this feature and the feature has some overhead. Note that if you don’t  
  811. #  specify at least one of K or E, no events will be delivered.  
  812. notify-keyspace-events ”“  
  813.   
  814. ############################### ADVANCED CONFIG ###############################  
  815.   
  816. # Hashes are encoded using a memory efficient data structure when they have a  
  817. # small number of entries, and the biggest entry does not exceed a given  
  818. # threshold. These thresholds can be configured using the following directives.  
  819. hash-max-ziplist-entries 512  
  820. hash-max-ziplist-value 64  
  821.   
  822. # Similarly to hashes, small lists are also encoded in a special way in order  
  823. # to save a lot of space. The special representation is only used when  
  824. # you are under the following limits:  
  825. list-max-ziplist-entries 512  
  826. list-max-ziplist-value 64  
  827.   
  828. # Sets have a special encoding in just one case: when a set is composed  
  829. # of just strings that happen to be integers in radix 10 in the range  
  830. # of 64 bit signed integers.  
  831. # The following configuration setting sets the limit in the size of the  
  832. # set in order to use this special memory saving encoding.  
  833. set-max-intset-entries 512  
  834.   
  835. # Similarly to hashes and lists, sorted sets are also specially encoded in  
  836. # order to save a lot of space. This encoding is only used when the length and  
  837. # elements of a sorted set are below the following limits:  
  838. zset-max-ziplist-entries 128  
  839. zset-max-ziplist-value 64  
  840.   
  841. # HyperLogLog sparse representation bytes limit. The limit includes the  
  842. # 16 bytes header. When an HyperLogLog using the sparse representation crosses  
  843. # this limit, it is converted into the dense representation.  
  844. #  
  845. # A value greater than 16000 is totally useless, since at that point the  
  846. # dense representation is more memory efficient.  
  847. #  
  848. # The suggested value is ~ 3000 in order to have the benefits of  
  849. # the space efficient encoding without slowing down too much PFADD,  
  850. # which is O(N) with the sparse encoding. The value can be raised to  
  851. # ~ 10000 when CPU is not a concern, but space is, and the data set is  
  852. # composed of many HyperLogLogs with cardinality in the 0 - 15000 range.  
  853. hll-sparse-max-bytes 3000  
  854.   
  855. # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in  
  856. # order to help rehashing the main Redis hash table (the one mapping top-level  
  857. # keys to values). The hash table implementation Redis uses (see dict.c)  
  858. # performs a lazy rehashing: the more operation you run into a hash table  
  859. # that is rehashing, the more rehashing “steps” are performed, so if the  
  860. # server is idle the rehashing is never complete and some more memory is used  
  861. # by the hash table.  
  862. #  
  863. # The default is to use this millisecond 10 times every second in order to  
  864. # actively rehash the main dictionaries, freeing memory when possible.  
  865. #  
  866. # If unsure:  
  867. # use “activerehashing no” if you have hard latency requirements and it is  
  868. # not a good thing in your environment that Redis can reply from time to time  
  869. # to queries with 2 milliseconds delay.  
  870. #  
  871. # use “activerehashing yes” if you don’t have such hard requirements but  
  872. # want to free memory asap when possible.  
  873. activerehashing yes  
  874.   
  875. # The client output buffer limits can be used to force disconnection of clients  
  876. # that are not reading data from the server fast enough for some reason (a  
  877. # common reason is that a Pub/Sub client can’t consume messages as fast as the  
  878. # publisher can produce them).  
  879. #  
  880. # The limit can be set differently for the three different classes of clients:  
  881. #  
  882. # normal -> normal clients including MONITOR clients  
  883. # slave  -> slave clients  
  884. # pubsub -> clients subscribed to at least one pubsub channel or pattern  
  885. #  
  886. # The syntax of every client-output-buffer-limit directive is the following:  
  887. #  
  888. # client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>  
  889. #  
  890. # A client is immediately disconnected once the hard limit is reached, or if  
  891. # the soft limit is reached and remains reached for the specified number of  
  892. # seconds (continuously).  
  893. # So for instance if the hard limit is 32 megabytes and the soft limit is  
  894. # 16 megabytes / 10 seconds, the client will get disconnected immediately  
  895. # if the size of the output buffers reach 32 megabytes, but will also get  
  896. # disconnected if the client reaches 16 megabytes and continuously overcomes  
  897. # the limit for 10 seconds.  
  898. #  
  899. # By default normal clients are not limited because they don’t receive data  
  900. # without asking (in a push way), but just after a request, so only  
  901. # asynchronous clients may create a scenario where data is requested faster  
  902. # than it can read.  
  903. #  
  904. # Instead there is a default limit for pubsub and slave clients, since  
  905. # subscribers and slaves receive data in a push fashion.  
  906. #  
  907. # Both the hard or the soft limit can be disabled by setting them to zero.  
  908. client-output-buffer-limit normal 0 0 0  
  909. client-output-buffer-limit slave 256mb 64mb 60  
  910. client-output-buffer-limit pubsub 32mb 8mb 60  
  911.   
  912. # Redis calls an internal function to perform many background tasks, like  
  913. # closing connections of clients in timeout, purging expired keys that are  
  914. # never requested, and so forth.  
  915. #  
  916. # Not all tasks are performed with the same frequency, but Redis checks for  
  917. # tasks to perform according to the specified “hz” value.  
  918. #  
  919. # By default “hz” is set to 10. Raising the value will use more CPU when  
  920. # Redis is idle, but at the same time will make Redis more responsive when  
  921. # there are many keys expiring at the same time, and timeouts may be  
  922. # handled with more precision.  
  923. #  
  924. # The range is between 1 and 500, however a value over 100 is usually not  
  925. # a good idea. Most users should use the default of 10 and raise this up to  
  926. # 100 only in environments where very low latency is required.  
  927. hz 10  
  928.   
  929. # When a child rewrites the AOF file, if the following option is enabled  
  930. # the file will be fsync-ed every 32 MB of data generated. This is useful  
  931. # in order to commit the file to the disk more incrementally and avoid  
  932. # big latency spikes.  
  933. aof-rewrite-incremental-fsync yes  
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specify# it in the usual form of 1k 5GB 4M and so forth:## 1k => 1000 bytes# 1kb => 1024 bytes# 1m => 1000000 bytes# 1mb => 1024*1024 bytes# 1g => 1000000000 bytes# 1gb => 1024*1024*1024 bytes## units are case insensitive so 1GB 1Gb 1gB are all the same.################################## INCLUDES #################################### Include one or more other config files here. This is useful if you# have a standard template that goes to all Redis servers but also need# to customize a few per-server settings. Include files can include# other files, so use this wisely.## Notice option "include" won't be rewritten by command "CONFIG REWRITE"# from admin or Redis Sentinel. Since Redis always uses the last processed# line as value of a configuration directive, you'd better put includes# at the beginning of this file to avoid overwriting config change at runtime.## If instead you are interested in using includes to override configuration# options, it is better to use include as the last line.## include /path/to/local.conf# include /path/to/other.conf################################ GENERAL ###################################### By default Redis does not run as a daemon. Use 'yes' if you need it.# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.daemonize yes# When running daemonized, Redis writes a pid file in /var/run/redis.pid by# default. You can specify a custom pid file location here.pidfile "/var/run/redis_6379.pid"# Accept connections on the specified port, default is 6379.# If port 0 is specified Redis will not listen on a TCP socket.port 6379# TCP listen() backlog.## In high requests-per-second environments you need an high backlog in order# to avoid slow clients connections issues. Note that the Linux kernel# will silently truncate it to the value of /proc/sys/net/core/somaxconn so# make sure to raise both the value of somaxconn and tcp_max_syn_backlog# in order to get the desired effect.tcp-backlog 511# By default Redis listens for connections from all the network interfaces# available on the server. It is possible to listen to just one or multiple# interfaces using the "bind" configuration directive, followed by one or# more IP addresses.## Examples:## bind 192.168.1.100 10.0.0.1# bind 127.0.0.1# Specify the path for the Unix socket that will be used to listen for# incoming connections. There is no default, so Redis will not listen# on a unix socket when not specified.## unixsocket /tmp/redis.sock# unixsocketperm 700# Close the connection after a client is idle for N seconds (0 to disable)timeout 0# TCP keepalive.## If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence# of communication. This is useful for two reasons:## 1) Detect dead peers.# 2) Take the connection alive from the point of view of network# equipment in the middle.## On Linux, the specified value (in seconds) is the period used to send ACKs.# Note that to close the connection the double of the time is needed.# On other kernels the period depends on the kernel configuration.## A reasonable value for this option is 60 seconds.tcp-keepalive 0# Specify the server verbosity level.# This can be one of:# debug (a lot of information, useful for development/testing)# verbose (many rarely useful info, but not a mess like the debug level)# notice (moderately verbose, what you want in production probably)# warning (only very important / critical messages are logged)loglevel notice# Specify the log file name. Also the empty string can be used to force# Redis to log on the standard output. Note that if you use standard# output for logging but daemonize, logs will be sent to /dev/nulllogfile "/my_soft/my_config/redis/6379/6379.log"# To enable logging to the system logger, just set 'syslog-enabled' to yes,# and optionally update the other syslog parameters to suit your needs.# syslog-enabled no# Specify the syslog identity.# syslog-ident redis# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.# syslog-facility local0# Set the number of databases. The default database is DB 0, you can select# a different one on a per-connection basis using SELECT <dbid> where# dbid is a number between 0 and 'databases'-1databases 16################################ SNAPSHOTTING ################################## Save the DB on disk:## save <seconds> <changes>## Will save the DB if both the given number of seconds and the given# number of write operations against the DB occurred.## In the example below the behaviour will be to save:# after 900 sec (15 min) if at least 1 key changed# after 300 sec (5 min) if at least 10 keys changed# after 60 sec if at least 10000 keys changed## Note: you can disable saving completely by commenting out all "save" lines.## It is also possible to remove all the previously configured save# points by adding a save directive with a single empty string argument# like in the following example:## save ""save 900 1save 300 10save 60 10000# By default Redis will stop accepting writes if RDB snapshots are enabled# (at least one save point) and the latest background save failed.# This will make the user aware (in a hard way) that data is not persisting# on disk properly, otherwise chances are that no one will notice and some# disaster will happen.## If the background saving process will start working again Redis will# automatically allow writes again.## However if you have setup your proper monitoring of the Redis server# and persistence, you may want to disable this feature so that Redis will# continue to work as usual even if there are problems with disk,# permissions, and so forth.stop-writes-on-bgsave-error yes# Compress string objects using LZF when dump .rdb databases?# For default that's set to 'yes' as it's almost always a win.# If you want to save some CPU in the saving child set it to 'no' but# the dataset will likely be bigger if you have compressible values or keys.rdbcompression yes# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.# This makes the format more resistant to corruption but there is a performance# hit to pay (around 10%) when saving and loading RDB files, so you can disable it# for maximum performances.## RDB files created with checksum disabled have a checksum of zero that will# tell the loading code to skip the check.rdbchecksum yes# The filename where to dump the DBdbfilename "dump_6379.rdb"# The working directory.## The DB will be written inside this directory, with the filename specified# above using the 'dbfilename' configuration directive.## The Append Only File will also be created inside this directory.## Note that you must specify a directory here, not a file name.dir "/my_soft/my_config/redis/6379/"################################# REPLICATION ################################## Master-Slave replication. Use slaveof to make a Redis instance a copy of# another Redis server. A few things to understand ASAP about Redis replication.## 1) Redis replication is asynchronous, but you can configure a master to# stop accepting writes if it appears to be not connected with at least# a given number of slaves.# 2) Redis slaves are able to perform a partial resynchronization with the# master if the replication link is lost for a relatively small amount of# time. You may want to configure the replication backlog size (see the next# sections of this file) with a sensible value depending on your needs.# 3) Replication is automatic and does not need user intervention. After a# network partition slaves automatically try to reconnect to masters# and resynchronize with them.## slaveof <masterip> <masterport># If the master is password protected (using the "requirepass" configuration# directive below) it is possible to tell the slave to authenticate before# starting the replication synchronization process, otherwise the master will# refuse the slave request.## masterauth <master-password># When a slave loses its connection with the master, or when the replication# is still in progress, the slave can act in two different ways:## 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will# still reply to client requests, possibly with out of date data, or the# data set may just be empty if this is the first synchronization.## 2) if slave-serve-stale-data is set to 'no' the slave will reply with# an error "SYNC with master in progress" to all the kind of commands# but to INFO and SLAVEOF.#slave-serve-stale-data yes# You can configure a slave instance to accept writes or not. Writing against# a slave instance may be useful to store some ephemeral data (because data# written on a slave will be easily deleted after resync with the master) but# may also cause problems if clients are writing to it because of a# misconfiguration.## Since Redis 2.6 by default slaves are read-only.## Note: read only slaves are not designed to be exposed to untrusted clients# on the internet. It's just a protection layer against misuse of the instance.# Still a read only slave exports by default all the administrative commands# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve# security of read only slaves using 'rename-command' to shadow all the# administrative / dangerous commands.slave-read-only yes# Replication SYNC strategy: disk or socket.## -------------------------------------------------------# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY# -------------------------------------------------------## New slaves and reconnecting slaves that are not able to continue the replication# process just receiving differences, need to do what is called a "full# synchronization". An RDB file is transmitted from the master to the slaves.# The transmission can happen in two different ways:## 1) Disk-backed: The Redis master creates a new process that writes the RDB# file on disk. Later the file is transferred by the parent# process to the slaves incrementally.# 2) Diskless: The Redis master creates a new process that directly writes the# RDB file to slave sockets, without touching the disk at all.## With disk-backed replication, while the RDB file is generated, more slaves# can be queued and served with the RDB file as soon as the current child producing# the RDB file finishes its work. With diskless replication instead once# the transfer starts, new slaves arriving will be queued and a new transfer# will start when the current one terminates.## When diskless replication is used, the master waits a configurable amount of# time (in seconds) before starting the transfer in the hope that multiple slaves# will arrive and the transfer can be parallelized.## With slow disks and fast (large bandwidth) networks, diskless replication# works better.repl-diskless-sync no# When diskless replication is enabled, it is possible to configure the delay# the server waits in order to spawn the child that transfers the RDB via socket# to the slaves.## This is important since once the transfer starts, it is not possible to serve# new slaves arriving, that will be queued for the next RDB transfer, so the server# waits a delay in order to let more slaves arrive.## The delay is specified in seconds, and by default is 5 seconds. To disable# it entirely just set it to 0 seconds and the transfer will start ASAP.repl-diskless-sync-delay 5# Slaves send PINGs to server in a predefined interval. It's possible to change# this interval with the repl_ping_slave_period option. The default value is 10# seconds.## repl-ping-slave-period 10# The following option sets the replication timeout for:## 1) Bulk transfer I/O during SYNC, from the point of view of slave.# 2) Master timeout from the point of view of slaves (data, pings).# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).## It is important to make sure that this value is greater than the value# specified for repl-ping-slave-period otherwise a timeout will be detected# every time there is low traffic between the master and the slave.## repl-timeout 60# Disable TCP_NODELAY on the slave socket after SYNC?## If you select "yes" Redis will use a smaller number of TCP packets and# less bandwidth to send data to slaves. But this can add a delay for# the data to appear on the slave side, up to 40 milliseconds with# Linux kernels using a default configuration.## If you select "no" the delay for data to appear on the slave side will# be reduced but more bandwidth will be used for replication.## By default we optimize for low latency, but in very high traffic conditions# or when the master and slaves are many hops away, turning this to "yes" may# be a good idea.repl-disable-tcp-nodelay no# Set the replication backlog size. The backlog is a buffer that accumulates# slave data when slaves are disconnected for some time, so that when a slave# wants to reconnect again, often a full resync is not needed, but a partial# resync is enough, just passing the portion of data the slave missed while# disconnected.## The bigger the replication backlog, the longer the time the slave can be# disconnected and later be able to perform a partial resynchronization.## The backlog is only allocated once there is at least a slave connected.## repl-backlog-size 1mb# After a master has no longer connected slaves for some time, the backlog# will be freed. The following option configures the amount of seconds that# need to elapse, starting from the time the last slave disconnected, for# the backlog buffer to be freed.## A value of 0 means to never release the backlog.## repl-backlog-ttl 3600# The slave priority is an integer number published by Redis in the INFO output.# It is used by Redis Sentinel in order to select a slave to promote into a# master if the master is no longer working correctly.## A slave with a low priority number is considered better for promotion, so# for instance if there are three slaves with priority 10, 100, 25 Sentinel will# pick the one with priority 10, that is the lowest.## However a special priority of 0 marks the slave as not able to perform the# role of master, so a slave with priority of 0 will never be selected by# Redis Sentinel for promotion.## By default the priority is 100.slave-priority 100# It is possible for a master to stop accepting writes if there are less than# N slaves connected, having a lag less or equal than M seconds.## The N slaves need to be in "online" state.## The lag in seconds, that must be <= the specified value, is calculated from# the last ping received from the slave, that is usually sent every second.## This option does not GUARANTEE that N replicas will accept the write, but# will limit the window of exposure for lost writes in case not enough slaves# are available, to the specified number of seconds.## For example to require at least 3 slaves with a lag <= 10 seconds use:## min-slaves-to-write 3# min-slaves-max-lag 10## Setting one or the other to 0 disables the feature.## By default min-slaves-to-write is set to 0 (feature disabled) and# min-slaves-max-lag is set to 10.################################## SECURITY #################################### Require clients to issue AUTH <PASSWORD> before processing any other# commands. This might be useful in environments in which you do not trust# others with access to the host running redis-server.## This should stay commented out for backward compatibility and because most# people do not need auth (e.g. they run their own servers).## Warning: since Redis is pretty fast an outside user can try up to# 150k passwords per second against a good box. This means that you should# use a very strong password otherwise it will be very easy to break.## requirepass foobared# Command renaming.## It is possible to change the name of dangerous commands in a shared# environment. For instance the CONFIG command may be renamed into something# hard to guess so that it will still be available for internal-use tools# but not available for general clients.## Example:## rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52## It is also possible to completely kill a command by renaming it into# an empty string:## rename-command CONFIG ""## Please note that changing the name of commands that are logged into the# AOF file or transmitted to slaves may cause problems.################################### LIMITS ##################################### Set the max number of connected clients at the same time. By default# this limit is set to 10000 clients, however if the Redis server is not# able to configure the process file limit to allow for the specified limit# the max number of allowed clients is set to the current file limit# minus 32 (as Redis reserves a few file descriptors for internal uses).## Once the limit is reached Redis will close all the new connections sending# an error 'max number of clients reached'.## maxclients 10000# Don't use more memory than the specified amount of bytes.# When the memory limit is reached Redis will try to remove keys# according to the eviction policy selected (see maxmemory-policy).## If Redis can't remove keys according to the policy, or if the policy is# set to 'noeviction', Redis will start to reply with errors to commands# that would use more memory, like SET, LPUSH, and so on, and will continue# to reply to read-only commands like GET.## This option is usually useful when using Redis as an LRU cache, or to set# a hard memory limit for an instance (using the 'noeviction' policy).## WARNING: If you have slaves attached to an instance with maxmemory on,# the size of the output buffers needed to feed the slaves are subtracted# from the used memory count, so that network problems / resyncs will# not trigger a loop where keys are evicted, and in turn the output# buffer of slaves is full with DELs of keys evicted triggering the deletion# of more keys, and so forth until the database is completely emptied.## In short... if you have slaves attached it is suggested that you set a lower# limit for maxmemory so that there is some free RAM on the system for slave# output buffers (but this is not needed if the policy is 'noeviction').## maxmemory <bytes># MAXMEMORY POLICY: how Redis will select what to remove when maxmemory# is reached. You can select among five behaviors:## volatile-lru -> remove the key with an expire set using an LRU algorithm# allkeys-lru -> remove any key according to the LRU algorithm# volatile-random -> remove a random key with an expire set# allkeys-random -> remove a random key, any key# volatile-ttl -> remove the key with the nearest expire time (minor TTL)# noeviction -> don't expire at all, just return an error on write operations## Note: with any of the above policies, Redis will return an error on write# operations, when there are no suitable keys for eviction.## At the date of writing these commands are: set setnx setex append# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby# getset mset msetnx exec sort## The default is:## maxmemory-policy noeviction# LRU and minimal TTL algorithms are not precise algorithms but approximated# algorithms (in order to save memory), so you can tune it for speed or# accuracy. For default Redis will check five keys and pick the one that was# used less recently, you can change the sample size using the following# configuration directive.## The default of 5 produces good enough results. 10 Approximates very closely# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.## maxmemory-samples 5############################## APPEND ONLY MODE ################################ By default Redis asynchronously dumps the dataset on disk. This mode is# good enough in many applications, but an issue with the Redis process or# a power outage may result into a few minutes of writes lost (depending on# the configured save points).## The Append Only File is an alternative persistence mode that provides# much better durability. For instance using the default data fsync policy# (see later in the config file) Redis can lose just one second of writes in a# dramatic event like a server power outage, or a single write if something# wrong with the Redis process itself happens, but the operating system is# still running correctly.## AOF and RDB persistence can be enabled at the same time without problems.# If the AOF is enabled on startup Redis will load the AOF, that is the file# with the better durability guarantees.## Please check http://redis.io/topics/persistence for more information.appendonly yes# The name of the append only file (default: "appendonly.aof")appendfilename "appendonly.aof"# The fsync() call tells the Operating System to actually write data on disk# instead of waiting for more data in the output buffer. Some OS will really flush# data on disk, some other OS will just try to do it ASAP.## Redis supports three different modes:## no: don't fsync, just let the OS flush the data when it wants. Faster.# always: fsync after every write to the append only log. Slow, Safest.# everysec: fsync only one time every second. Compromise.## The default is "everysec", as that's usually the right compromise between# speed and data safety. It's up to you to understand if you can relax this to# "no" that will let the operating system flush the output buffer when# it wants, for better performances (but if you can live with the idea of# some data loss consider the default persistence mode that's snapshotting),# or on the contrary, use "always" that's very slow but a bit safer than# everysec.## More details please check the following article:# http://antirez.com/post/redis-persistence-demystified.html## If unsure, use "everysec".# appendfsync alwaysappendfsync everysec# appendfsync no# When the AOF fsync policy is set to always or everysec, and a background# saving process (a background save or AOF log background rewriting) is# performing a lot of I/O against the disk, in some Linux configurations# Redis may block too long on the fsync() call. Note that there is no fix for# this currently, as even performing fsync in a different thread will block# our synchronous write(2) call.## In order to mitigate this problem it's possible to use the following option# that will prevent fsync() from being called in the main process while a# BGSAVE or BGREWRITEAOF is in progress.## This means that while another child is saving, the durability of Redis is# the same as "appendfsync none". In practical terms, this means that it is# possible to lose up to 30 seconds of log in the worst scenario (with the# default Linux settings).## If you have latency problems turn this to "yes". Otherwise leave it as# "no" that is the safest pick from the point of view of durability.no-appendfsync-on-rewrite no# Automatic rewrite of the append only file.# Redis is able to automatically rewrite the log file implicitly calling# BGREWRITEAOF when the AOF log size grows by the specified percentage.## This is how it works: Redis remembers the size of the AOF file after the# latest rewrite (if no rewrite has happened since the restart, the size of# the AOF at startup is used).## This base size is compared to the current size. If the current size is# bigger than the specified percentage, the rewrite is triggered. Also# you need to specify a minimal size for the AOF file to be rewritten, this# is useful to avoid rewriting the AOF file even if the percentage increase# is reached but it is still pretty small.## Specify a percentage of zero in order to disable the automatic AOF# rewrite feature.auto-aof-rewrite-percentage 100auto-aof-rewrite-min-size 64mb# An AOF file may be found to be truncated at the end during the Redis# startup process, when the AOF data gets loaded back into memory.# This may happen when the system where Redis is running# crashes, especially when an ext4 filesystem is mounted without the# data=ordered option (however this can't happen when Redis itself# crashes or aborts but the operating system still works correctly).## Redis can either exit with an error when this happens, or load as much# data as possible (the default now) and start if the AOF file is found# to be truncated at the end. The following option controls this behavior.## If aof-load-truncated is set to yes, a truncated AOF file is loaded and# the Redis server starts emitting a log to inform the user of the event.# Otherwise if the option is set to no, the server aborts with an error# and refuses to start. When the option is set to no, the user requires# to fix the AOF file using the "redis-check-aof" utility before to restart# the server.## Note that if the AOF file will be found to be corrupted in the middle# the server will still exit with an error. This option only applies when# Redis will try to read more data from the AOF file but not enough bytes# will be found.aof-load-truncated yes################################ LUA SCRIPTING ################################ Max execution time of a Lua script in milliseconds.## If the maximum execution time is reached Redis will log that a script is# still in execution after the maximum allowed time and will start to# reply to queries with an error.## When a long running script exceeds the maximum execution time only the# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be# used to stop a script that did not yet called write commands. The second# is the only way to shut down the server in the case a write command was# already issued by the script but the user doesn't want to wait for the natural# termination of the script.## Set it to 0 or a negative value for unlimited execution without warnings.lua-time-limit 5000################################ REDIS CLUSTER ################################# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however# in order to mark it as "mature" we need to wait for a non trivial percentage# of users to deploy it in production.# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++## Normal Redis instances can't be part of a Redis Cluster; only nodes that are# started as cluster nodes can. In order to start a Redis instance as a# cluster node enable the cluster support uncommenting the following:## cluster-enabled yes# Every cluster node has a cluster configuration file. This file is not# intended to be edited by hand. It is created and updated by Redis nodes.# Every Redis Cluster node requires a different cluster configuration file.# Make sure that instances running in the same system do not have# overlapping cluster configuration file names.## cluster-config-file nodes-6379.conf# Cluster node timeout is the amount of milliseconds a node must be unreachable# for it to be considered in failure state.# Most other internal time limits are multiple of the node timeout.## cluster-node-timeout 15000# A slave of a failing master will avoid to start a failover if its data# looks too old.## There is no simple way for a slave to actually have a exact measure of# its "data age", so the following two checks are performed:## 1) If there are multiple slaves able to failover, they exchange messages# in order to try to give an advantage to the slave with the best# replication offset (more data from the master processed).# Slaves will try to get their rank by offset, and apply to the start# of the failover a delay proportional to their rank.## 2) Every single slave computes the time of the last interaction with# its master. This can be the last ping or command received (if the master# is still in the "connected" state), or the time that elapsed since the# disconnection with the master (if the replication link is currently down).# If the last interaction is too old, the slave will not try to failover# at all.## The point "2" can be tuned by user. Specifically a slave will not perform# the failover if, since the last interaction with the master, the time# elapsed is greater than:## (node-timeout * slave-validity-factor) + repl-ping-slave-period## So for example if node-timeout is 30 seconds, and the slave-validity-factor# is 10, and assuming a default repl-ping-slave-period of 10 seconds, the# slave will not try to failover if it was not able to talk with the master# for longer than 310 seconds.## A large slave-validity-factor may allow slaves with too old data to failover# a master, while a too small value may prevent the cluster from being able to# elect a slave at all.## For maximum availability, it is possible to set the slave-validity-factor# to a value of 0, which means, that slaves will always try to failover the# master regardless of the last time they interacted with the master.# (However they'll always try to apply a delay proportional to their# offset rank).## Zero is the only value able to guarantee that when all the partitions heal# the cluster will always be able to continue.## cluster-slave-validity-factor 10# Cluster slaves are able to migrate to orphaned masters, that are masters# that are left without working slaves. This improves the cluster ability# to resist to failures as otherwise an orphaned master can't be failed over# in case of failure if it has no working slaves.## Slaves migrate to orphaned masters only if there are still at least a# given number of other working slaves for their old master. This number# is the "migration barrier". A migration barrier of 1 means that a slave# will migrate only if there is at least 1 other working slave for its master# and so forth. It usually reflects the number of slaves you want for every# master in your cluster.## Default is 1 (slaves migrate only if their masters remain with at least# one slave). To disable migration just set it to a very large value.# A value of 0 can be set but is useful only for debugging and dangerous# in production.## cluster-migration-barrier 1# By default Redis Cluster nodes stop accepting queries if they detect there# is at least an hash slot uncovered (no available node is serving it).# This way if the cluster is partially down (for example a range of hash slots# are no longer covered) all the cluster becomes, eventually, unavailable.# It automatically returns available as soon as all the slots are covered again.## However sometimes you want the subset of the cluster which is working,# to continue to accept queries for the part of the key space that is still# covered. In order to do so, just set the cluster-require-full-coverage# option to no.## cluster-require-full-coverage yes# In order to setup your cluster make sure to read the documentation# available at http://redis.io web site.################################## SLOW LOG #################################### The Redis Slow Log is a system to log queries that exceeded a specified# execution time. The execution time does not include the I/O operations# like talking with the client, sending the reply and so forth,# but just the time needed to actually execute the command (this is the only# stage of command execution where the thread is blocked and can not serve# other requests in the meantime).## You can configure the slow log with two parameters: one tells Redis# what is the execution time, in microseconds, to exceed in order for the# command to get logged, and the other parameter is the length of the# slow log. When a new command is logged the oldest one is removed from the# queue of logged commands.# The following time is expressed in microseconds, so 1000000 is equivalent# to one second. Note that a negative number disables the slow log, while# a value of zero forces the logging of every command.slowlog-log-slower-than 10000# There is no limit to this length. Just be aware that it will consume memory.# You can reclaim memory used by the slow log with SLOWLOG RESET.slowlog-max-len 128################################ LATENCY MONITOR ############################### The Redis latency monitoring subsystem samples different operations# at runtime in order to collect data related to possible sources of# latency of a Redis instance.## Via the LATENCY command this information is available to the user that can# print graphs and obtain reports.## The system only logs operations that were performed in a time equal or# greater than the amount of milliseconds specified via the# latency-monitor-threshold configuration directive. When its value is set# to zero, the latency monitor is turned off.## By default latency monitoring is disabled since it is mostly not needed# if you don't have latency issues, and collecting data has a performance# impact, that while very small, can be measured under big load. Latency# monitoring can easily be enabled at runtime using the command# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.latency-monitor-threshold 0############################# EVENT NOTIFICATION ############################### Redis can notify Pub/Sub clients about events happening in the key space.# This feature is documented at http://redis.io/topics/notifications## For instance if keyspace events notification is enabled, and a client# performs a DEL operation on key "foo" stored in the Database 0, two# messages will be published via Pub/Sub:## PUBLISH __keyspace@0__:foo del# PUBLISH __keyevent@0__:del foo## It is possible to select the events that Redis will notify among a set# of classes. Every class is identified by a single character:## K Keyspace events, published with __keyspace@<db>__ prefix.# E Keyevent events, published with __keyevent@<db>__ prefix.# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...# $ String commands# l List commands# s Set commands# h Hash commands# z Sorted set commands# x Expired events (events generated every time a key expires)# e Evicted events (events generated when a key is evicted for maxmemory)# A Alias for g$lshzxe, so that the "AKE" string means all the events.## The "notify-keyspace-events" takes as argument a string that is composed# of zero or multiple characters. The empty string means that notifications# are disabled.## Example: to enable list and generic events, from the point of view of the# event name, use:## notify-keyspace-events Elg## Example 2: to get the stream of the expired keys subscribing to channel# name __keyevent@0__:expired use:## notify-keyspace-events Ex## By default all notifications are disabled because most users don't need# this feature and the feature has some overhead. Note that if you don't# specify at least one of K or E, no events will be delivered.notify-keyspace-events ""############################### ADVANCED CONFIG ################################ Hashes are encoded using a memory efficient data structure when they have a# small number of entries, and the biggest entry does not exceed a given# threshold. These thresholds can be configured using the following directives.hash-max-ziplist-entries 512hash-max-ziplist-value 64# Similarly to hashes, small lists are also encoded in a special way in order# to save a lot of space. The special representation is only used when# you are under the following limits:list-max-ziplist-entries 512list-max-ziplist-value 64# Sets have a special encoding in just one case: when a set is composed# of just strings that happen to be integers in radix 10 in the range# of 64 bit signed integers.# The following configuration setting sets the limit in the size of the# set in order to use this special memory saving encoding.set-max-intset-entries 512# Similarly to hashes and lists, sorted sets are also specially encoded in# order to save a lot of space. This encoding is only used when the length and# elements of a sorted set are below the following limits:zset-max-ziplist-entries 128zset-max-ziplist-value 64# HyperLogLog sparse representation bytes limit. The limit includes the# 16 bytes header. When an HyperLogLog using the sparse representation crosses# this limit, it is converted into the dense representation.## A value greater than 16000 is totally useless, since at that point the# dense representation is more memory efficient.## The suggested value is ~ 3000 in order to have the benefits of# the space efficient encoding without slowing down too much PFADD,# which is O(N) with the sparse encoding. The value can be raised to# ~ 10000 when CPU is not a concern, but space is, and the data set is# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.hll-sparse-max-bytes 3000# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in# order to help rehashing the main Redis hash table (the one mapping top-level# keys to values). The hash table implementation Redis uses (see dict.c)# performs a lazy rehashing: the more operation you run into a hash table# that is rehashing, the more rehashing "steps" are performed, so if the# server is idle the rehashing is never complete and some more memory is used# by the hash table.## The default is to use this millisecond 10 times every second in order to# actively rehash the main dictionaries, freeing memory when possible.## If unsure:# use "activerehashing no" if you have hard latency requirements and it is# not a good thing in your environment that Redis can reply from time to time# to queries with 2 milliseconds delay.## use "activerehashing yes" if you don't have such hard requirements but# want to free memory asap when possible.activerehashing yes# The client output buffer limits can be used to force disconnection of clients# that are not reading data from the server fast enough for some reason (a# common reason is that a Pub/Sub client can't consume messages as fast as the# publisher can produce them).## The limit can be set differently for the three different classes of clients:## normal -> normal clients including MONITOR clients# slave -> slave clients# pubsub -> clients subscribed to at least one pubsub channel or pattern## The syntax of every client-output-buffer-limit directive is the following:## client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>## A client is immediately disconnected once the hard limit is reached, or if# the soft limit is reached and remains reached for the specified number of# seconds (continuously).# So for instance if the hard limit is 32 megabytes and the soft limit is# 16 megabytes / 10 seconds, the client will get disconnected immediately# if the size of the output buffers reach 32 megabytes, but will also get# disconnected if the client reaches 16 megabytes and continuously overcomes# the limit for 10 seconds.## By default normal clients are not limited because they don't receive data# without asking (in a push way), but just after a request, so only# asynchronous clients may create a scenario where data is requested faster# than it can read.## Instead there is a default limit for pubsub and slave clients, since# subscribers and slaves receive data in a push fashion.## Both the hard or the soft limit can be disabled by setting them to zero.client-output-buffer-limit normal 0 0 0client-output-buffer-limit slave 256mb 64mb 60client-output-buffer-limit pubsub 32mb 8mb 60# Redis calls an internal function to perform many background tasks, like# closing connections of clients in timeout, purging expired keys that are# never requested, and so forth.## Not all tasks are performed with the same frequency, but Redis checks for# tasks to perform according to the specified "hz" value.## By default "hz" is set to 10. Raising the value will use more CPU when# Redis is idle, but at the same time will make Redis more responsive when# there are many keys expiring at the same time, and timeouts may be# handled with more precision.## The range is between 1 and 500, however a value over 100 is usually not# a good idea. Most users should use the default of 10 and raise this up to# 100 only in environments where very low latency is required.hz 10# When a child rewrites the AOF file, if the following option is enabled# the file will be fsync-ed every 32 MB of data generated. This is useful# in order to commit the file to the disk more incrementally and avoid# big latency spikes.aof-rewrite-incremental-fsync yes


原创粉丝点击