x264 码率控制:ABR模式

来源:互联网 发布:慈禧为什么杀光绪 知乎 编辑:程序博客网 时间:2024/05/16 16:05

前段时间看了一下x264 码率控制部分,在这里简要分析一下x264的ABR模式相关代码,有不对的地方欢迎指正。

因为ABR模式在控制过程中会产生较大的码率波动,进而导致图像质量不稳定,同时在Http Adaptive Streaming中,也会导致视频segment大小不稳定,在接收端产生卡顿。所以ABR模式一般配合vbv使用,使用vbv buffer来限制码率的波动。

ABR模式的流程图如下:


ABR会在帧级、行级和宏块级去调整qscale(QP)。帧级和行级调整的目的主要有两个:1,总码率逼近目标码率;2,vbvbuffer不会overflow或者underflow,即码流大小稳定。宏块级的调整主要是Adaptive Quantization(AQ)和MB-tree,前者作用于空域,根据宏块的平滑程度调整qscale,后者作用于时域,根据宏块被后续帧参考的多少来决定其重要性,继而调整qscale。

和码率控制相关的函数可以参见

zhanghui_cuc   x264源码分析与应用示例(二)——码率控制   http://blog.csdn.net/nonmarking/article/details/50737198

qscale的初始化和调整过程主要在 rate_estimate_qscale( )函数中完成,我们先从这个函数开始看起。

rate_estimate_qscale( )

static float rate_estimate_qscale( x264_t *h ){    float q;    x264_ratecontrol_t *rcc = h->rc;    ratecontrol_entry_t rce = {0};    int pict_type = h->sh.i_type;    int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]       //total bits已编码比特数                          + h->stat.i_frame_size[SLICE_TYPE_P]                          + h->stat.i_frame_size[SLICE_TYPE_B])                       - rcc->filler_bits_sum;                      //编码完成帧的filler data大小(不计入视频大小)    if( rcc->b_2pass )    {        rce = *rcc->rce;        if( pict_type != rce.pict_type )        {            x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",                      slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] );        }    }    if( pict_type == SLICE_TYPE_B )    {        /* B-frames don't have independent ratecontrol, but rather get the         * average QP of the two adjacent P-frames + an offset *///B帧的QP由两个相邻的P帧的QP计算而来        int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type);        int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type);        int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc);        int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc);        float q0 = h->fref_nearest[0]->f_qp_avg_rc;        float q1 = h->fref_nearest[1]->f_qp_avg_rc;        if( h->fref_nearest[0]->i_type == X264_TYPE_BREF )            q0 -= rcc->pb_offset/2;        if( h->fref_nearest[1]->i_type == X264_TYPE_BREF )            q1 -= rcc->pb_offset/2;        if( i0 && i1 )            q = (q0 + q1) / 2 + rcc->ip_offset;        else if( i0 )            q = q1;        else if( i1 )            q = q0;        else            q = (q0*dt1 + q1*dt0) / (dt0 + dt1);        if( h->fenc->b_kept_as_ref )            q += rcc->pb_offset/2;        else            q += rcc->pb_offset;        rcc->qp_novbv = q;        q = qp2qscale( q );        if( rcc->b_2pass )            rcc->frame_size_planned = qscale2bits( &rce, q );        else            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref[1][h->i_ref[1]-1]->i_satd );        /* Limit planned size by MinCR */        if( rcc->b_vbv )            rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum );        h->rc->frame_size_estimated = rcc->frame_size_planned;        /* For row SATDs */        if( rcc->b_vbv )            rcc->last_satd = x264_rc_analyse_slice( h );   //根据mb-tree的结果重新计算frame SATD cost,计算每一行的SATD cost         return q;    }    else    {        double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate;//abr缓存,用于控制实际码流大小和目标大小的差值        double predicted_bits = total_bits;             if( h->i_thread_frames > 1 )            //预测当前线程中的编码帧大小        {            int j = h->rc - h->thread[0]->rc;            for( int i = 1; i < h->i_thread_frames; i++ )            {                x264_t *t = h->thread[(j+i) % h->i_thread_frames];                double bits = t->rc->frame_size_planned;                if( !t->b_thread_active )                    continue;                bits = X264_MAX(bits, t->rc->frame_size_estimated);                predicted_bits += bits;      //已编码码流大小+线程中编码帧的大小            }        }        if( rcc->b_2pass )                  //2pass部分暂时跳过        {            double lmin = rcc->lmin[pict_type];            double lmax = rcc->lmax[pict_type];            double diff;            /* Adjust ABR buffer based on distance to the end of the video. */            if( rcc->num_entries > h->i_frame )            {                double final_bits = rcc->entry_out[rcc->num_entries-1]->expected_bits;                double video_pos = rce.expected_bits / final_bits;                double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );                abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );            }            diff = predicted_bits - rce.expected_bits;            q = rce.new_qscale;            q /= x264_clip3f((abr_buffer - diff) / abr_buffer, .5, 2);            if( h->i_frame >= rcc->fps && rcc->expected_bits_sum >= 1 )            {                /* Adjust quant based on the difference between                 * achieved and expected bitrate so far */                double cur_time = (double)h->i_frame / rcc->num_entries;                double w = x264_clip3f( cur_time*100, 0.0, 1.0 );                q *= pow( (double)total_bits / rcc->expected_bits_sum, w );            }            rcc->qp_novbv = qscale2qp( q );            if( rcc->b_vbv )            {                /* Do not overflow vbv */                double expected_size = qscale2bits( &rce, q );                double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;                double expected_fullness = rce.expected_vbv / rcc->buffer_size;                double qmax = q*(2 - expected_fullness);                double size_constraint = 1 + expected_fullness;                qmax = X264_MAX( qmax, rce.new_qscale );                if( expected_fullness < .05 )                    qmax = lmax;                qmax = X264_MIN(qmax, lmax);                while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||                        ((expected_vbv < 0) && (q < lmax)))                {                    q *= 1.05;                    expected_size = qscale2bits(&rce, q);                    expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;                }                rcc->last_satd = x264_rc_analyse_slice( h );            }            q = x264_clip3f( q, lmin, lmax );        }        else /* 1pass ABR */        {            /* Calculate the quantizer which would have produced the desired             * average bitrate if it had been applied to all frames so far.             * Then modulate that quant based on the current frame's complexity             * relative to the average complexity so far (using the 2pass RCEQ).             * Then bias the quant up or down if total size so far was far from             * the target.             * Result: Depending on the value of rate_tolerance, there is a             * tradeoff between quality and bitrate precision. But at large             * tolerances, the bit distribution approaches that of 2pass. */            double wanted_bits, overflow = 1;            rcc->last_satd = x264_rc_analyse_slice( h );  //根据mb-tree的结果重新计算frame SATD cost,计算每一行的SATD cost             rcc->short_term_cplxsum *= 0.5;            rcc->short_term_cplxcount *= 0.5;            rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION);            rcc->short_term_cplxcount ++;            rce.tex_bits = rcc->last_satd;            rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount;   //旧版x264所用的复杂度公式            rce.mv_bits = 0;            rce.p_count = rcc->nmb;            rce.i_count = 0;            rce.s_count = 0;            rce.qscale = 1;            rce.pict_type = pict_type;            rce.i_duration = h->fenc->i_duration;            if( h->param.rc.i_rc_method == X264_RC_CRF )            {                q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame );            }            else            {                q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );//计算每一帧的qscale初值并根据rate_factor调整                /* ABR code can potentially be counterproductive in CBR, so just don't bother.                 * Don't run it if the frame complexity is zero either. */                if( !rcc->b_vbv_min_rate && rcc->last_satd )  //不开启vbv时会增加一次调整                {                    // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?                    int i_frame_done = h->i_frame;                    double time_done = i_frame_done / rcc->fps;                    if( h->param.b_vfr_input && i_frame_done > 0 )                        time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den;                    wanted_bits = time_done * rcc->bitrate;                      if( wanted_bits > 0 )                    {                        abr_buffer *= X264_MAX( 1, sqrt( time_done ) );  //abr_buffer:用来控制实际比特数跟目标比特数的差值                        overflow = x264_clip3f( 1.0 + (predicted_bits - wanted_bits) / abr_buffer, .5, 2 );                        q *= overflow;                                  //根据差值调整qscale                    }                }            }            if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1                /* should test _next_ pict type, but that isn't decided yet */                && rcc->last_non_b_pict_type != SLICE_TYPE_I )            {                q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );                q /= fabs( h->param.rc.f_ip_factor );            }            else if( h->i_frame > 0 )            {                if( h->param.rc.i_rc_method != X264_RC_CRF )                {                    /* Asymmetric clipping, because symmetric would prevent                     * overflow control in areas of rapidly oscillating complexity */                    double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;                    double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;                    if( overflow > 1.1 && h->i_frame > 3 )                        lmax *= rcc->lstep;                    else if( overflow < 0.9 )                        lmin /= rcc->lstep;                    q = x264_clip3f(q, lmin, lmax);                }            }            else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )            {                q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor );            }            rcc->qp_novbv = qscale2qp( q );            //FIXME use get_diff_limited_q() ?            q = clip_qscale( h, pict_type, q );          //根据vbv buffer的状态调整qscale        }        rcc->last_qscale_for[pict_type] =        rcc->last_qscale = q;        if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )            rcc->last_qscale_for[SLICE_TYPE_P] = q * fabs( h->param.rc.f_ip_factor );        if( rcc->b_2pass )            rcc->frame_size_planned = qscale2bits( &rce, q );        else            rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );        /* Always use up the whole VBV in this case. */        if( rcc->single_frame_vbv )            rcc->frame_size_planned = rcc->buffer_rate;        /* Limit planned size by MinCR */        if( rcc->b_vbv )            rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum );        h->rc->frame_size_estimated = rcc->frame_size_planned;   //size-estimated在当前帧编码完后会更新成实际编码大小        return q;    }}


可以看到,ABR模式下,qscale的初值由get_qscale函数计算得出,然后在不开启vbv的情况下,根据(predicted_bits- wanted_bits)来调整qscale;在开启vbv的情况下,使用clip_qscale( ),根据vbv buffer的状态来调整qscale.

get_qscale( )

get_qscale( )函数用于计算qscale的初值,在MB-tree默认开启的情况下,不再使用模糊复杂度公式计算qscale,而是会根据fps计算出一个固定值,然后通过rate_factor进行调整。

q /=rate_factor;

rate_factor的更新是在x264_ratecontrol_end( ),公式如下

rate_factor=rcc->wanted_bits_window / rcc->cplxr_sum;

rc->cplxr_sum+= bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq;

rc->wanted_bits_window+= h->fenc->f_duration * rc->bitrate;

bits是每一帧的实际比特数,rc->qpa_rc是最后帧级和行级调整完后的qp, rc->last_rceq上面求出的qscale初值。rc->wanted_bits_window是当前目标比特数。

由以上公式可以看到,rate_factor由两个比值决定:

目标比特数/实际比特数,比值越大→rate_factor越大→qscale和QP越小。

上一帧调整前qscale/上一帧调整后qscale,这个比值一般处于(0,1),比值越小说明上一帧调整幅度越大→rate_factor越小→qscale和QP越大。
static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num){    x264_ratecontrol_t *rcc= h->rc;    x264_zone_t *zone = get_zone( h, frame_num );    double q;    if( h->param.rc.b_mb_tree )      //在新版本x264中mb-tree默认开启,所以不使用传统的复杂度公式来计算qscale,而是通过fps计算出一个固定值    {        double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;        q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress );    //fps越大 底数越大//BASE_FRAME_DURATION=0.04 即fps=25,rce->i_duration * timescale编码所用的1/fps    }    else        q = pow( rce->blurred_complexity, 1 - rcc->qcompress );    // avoid NaN's in the rc_eq    if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )        q = rcc->last_qscale_for[rce->pict_type];    else    {        rcc->last_rceq = q;               q /= rate_factor;     //根据rate_factor调整qp初值        rcc->last_qscale = q;    }    if( zone )    {        if( zone->b_force_qp )            q = qp2qscale( zone->i_qp );        else            q /= zone->f_bitrate_factor;    }    return q;}

clip_qscale( )

clip_qscale( )通过预测当前qscale下未来n帧的大小来估计vbv的状态,如果vbv buffer将overflow,则增大qscale;如果buffer将会underflow,则减小qscale。

static double clip_qscale( x264_t *h, int pict_type, double q ){    x264_ratecontrol_t *rcc = h->rc;    double lmin = rcc->lmin[pict_type];    double lmax = rcc->lmax[pict_type];    if( rcc->rate_factor_max_increment )        lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) );    double q0 = q;    /* B-frames are not directly subject to VBV,     * since they are controlled by the P-frames' QPs. */    if( rcc->b_vbv && rcc->last_satd > 0 )    {        double fenc_cpb_duration = (double)h->fenc->i_cpb_duration *                                   h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;        /* Lookahead VBV: raise the quantizer as necessary such that no frames in         * the lookahead overflow and such that the buffer is in a reasonable state         * by the end of the lookahead. */        if( h->param.rc.i_lookahead )        {            int terminate = 0;            /* Avoid an infinite loop. */            for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ )            {                double frame_q[3];                double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );                  double buffer_fill_cur = rcc->buffer_fill - cur_bits;                double target_fill;                double total_duration = 0;                double last_duration = fenc_cpb_duration;                frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;                frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;                frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;                /* Loop over the planned future frames. */                for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ ) //向前预测n帧大小,一般情况下等于lookahead的数量                {                    total_duration += last_duration;                    buffer_fill_cur += rcc->vbv_max_rate * last_duration;                    int i_type = h->fenc->i_planned_type[j];                    int i_satd = h->fenc->i_planned_satd[j];                    if( i_type == X264_TYPE_AUTO )     //一直预测到类型为AUTO的帧                        break;                    i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;                    cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );    //使用线性模型预测未来帧大小                    buffer_fill_cur -= cur_bits;                    last_duration = h->fenc->f_planned_cpb_duration[j];                }                /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */                target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );                if( buffer_fill_cur < target_fill )   //buffer_fill_cur是buffer剩余空间,如果剩余空间过小,增大qscale                {                    q *= 1.01;                    terminate |= 1;                    continue;                }                /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */                target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );                if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )  //如果剩余空间过大,减小qscale                {                    q /= 1.01;                    terminate |= 2;                    continue;                }                break;            }        }        /* Fallback to old purely-reactive algorithm: no lookahead. */        else        {            if( ( pict_type == SLICE_TYPE_P ||                ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) &&                rcc->buffer_fill/rcc->buffer_size < 0.5 )            {                q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );            }            /* Now a hard threshold to make sure the frame fits in VBV.             * This one is mostly for I-frames. */            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );            /* For small VBVs, allow the frame to use up the entire VBV. */            double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;            /* For single-frame VBVs, request that the frame use up the entire VBV. */            double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;            if( bits > rcc->buffer_fill/max_fill_factor )            {                double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );                q /= qf;                bits *= qf;            }            if( bits < rcc->buffer_rate/min_fill_factor )            {                double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 );                q *= qf;            }            q = X264_MAX( q0, q );        }        /* Check B-frame complexity, and use up any bits that would         * overflow before the next P-frame. */        if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )        {            int nb = rcc->bframes;            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );            double pbbits = bits;            double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );            double space;            double bframe_cpb_duration = 0;            double minigop_cpb_duration;            for( int i = 0; i < nb; i++ )                bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i];            if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )                nb = 0;            pbbits += nb * bbits;            minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration;            space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;            if( pbbits < space )            {                q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );            }            q = X264_MAX( q0/2, q );        }        /* Apply MinCR and buffer fill restrictions */        double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );        double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );        if( bits > frame_size_maximum )            q *= bits / frame_size_maximum;        if( !rcc->b_vbv_min_rate )            q = X264_MAX( q0, q );    }    if( lmin==lmax )        return lmin;    else if( rcc->b_2pass )    {        double min2 = log( lmin );        double max2 = log( lmax );        q = (log(q) - min2)/(max2-min2) - 0.5;        q = 1.0/(1.0 + exp( -4*q ));        q = q*(max2-min2) + min2;        return exp( q );    }    else        return x264_clip3f( q, lmin, lmax );}

在帧级调整完QP后,编码每个MB时,Adaptive Quantization和MB-tree会使用qp_offset对QP进行调整,这一步由函数x264_ratecontrol_mb_qp()实现。

AQ产生的qp_offset在函数x264_adaptive_quant_frame( )中,根据宏块的AC系数来调整qp_offset,相比于DC系数是图像的低频成分,反映了像素值的平均大小,AC系数是图像的高频成分,反映了图像的复杂程度。如果AC系数越低,则认为该宏块越平滑,其QP越小,如果AC系数越大,该宏块越复杂,则增大其QP。

MB-tree产生的offset在x264_macroblock_tree_finish( )中,如果一个宏块被后面的帧参考越多,则认为其重要性越高,则减小该宏块的QP,给该宏块分配更多码率,反之增大QP,MB-tree相关算法具体参见http://blog.csdn.net/zhoudegui88/article/details/73017216

 

每编码完一行后,会利用预测模型对当前帧大小进行预测,然后根据VBV buffer fill 对QP进行微调。这一步是在x264_ratecontrol_mb()中进行。

x264_ratecontrol_mb( )

int x264_ratecontrol_mb( x264_t *h, int bits ){    x264_ratecontrol_t *rc = h->rc;    const int y = h->mb.i_mb_y;    //行数    h->fdec->i_row_bits[y] += bits;    rc->qpa_aq += h->mb.i_qp;           //qpa_ap 自适应量化后的qp均值,即加上qpoffset后的qp值    if( h->mb.i_mb_x != h->mb.i_mb_width - 1 )   //没到行尾,返回        return 0;    x264_emms();    rc->qpa_rc += rc->qpm * h->mb.i_mb_width; //qpm  estimal_qsale的结果 自适应量化前的qp均值    if( !rc->b_vbv )        return 0;    float qscale = qp2qscale( rc->qpm );    h->fdec->f_row_qp[y] = rc->qpm;    h->fdec->f_row_qscale[y] = qscale;    update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] ); //模型系数的更新    if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] )        update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );    /* update ratecontrol per-mbpair in MBAFF */    if( SLICE_MBAFF && !(y&1) )        return 0;    /* FIXME: We don't currently support the case where there's a slice     * boundary in between. */    int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride);    /* tweak quality based on difference from predicted size */    float prev_row_qp = h->fdec->f_row_qp[y];    float qp_absolute_max = h->param.rc.i_qp_max;    if( rc->rate_factor_max_increment )        qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );    float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );    float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );    float step_size = 0.5f;    float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;    float bits_so_far = row_bits_so_far( h, y );    float max_frame_error = x264_clip3f( 1.0 / h->mb.i_mb_height, 0.05, 0.25 );    float max_frame_size = rc->frame_size_maximum - rc->frame_size_maximum * max_frame_error;    max_frame_size = X264_MIN( max_frame_size, rc->buffer_fill - rc->buffer_rate * max_frame_error );    float size_of_other_slices = 0;    if( h->param.b_sliced_threads )    {        float size_of_other_slices_planned = 0;        for( int i = 0; i < h->param.i_threads; i++ )            if( h != h->thread[i] )            {                size_of_other_slices += h->thread[i]->rc->frame_size_estimated;                size_of_other_slices_planned += h->thread[i]->rc->slice_size_planned;            }        float weight = rc->slice_size_planned / rc->frame_size_planned;        size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;    }    if( y < h->i_threadslice_end-1 )        //如果不是当前帧的最后一行    {        /* B-frames shouldn't use lower QP than their reference frames. */        if( h->sh.i_type == SLICE_TYPE_B )        {            qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) );            rc->qpm = X264_MAX( rc->qpm, qp_min );        }        float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;        buffer_left_planned = X264_MAX( buffer_left_planned, 0.f );        /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */        float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;        float b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;        float trust_coeff = x264_clip3f( bits_so_far / slice_size_planned, 0.0, 1.0 );        /* Don't increase the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */        /* area at the top of the frame was measured inaccurately. */        if( trust_coeff < 0.05f )            qp_max = qp_absolute_max = prev_row_qp;        if( h->sh.i_type != SLICE_TYPE_I )            rc_tol *= 0.5f;        if( !rc->b_vbv_min_rate )            qp_min = X264_MAX( qp_min, rc->qp_novbv );        while( rc->qpm <  qp_max                                       //根据与预测值的差距还有VBV buffer的状态调整qpm               && ((b1 > rc->frame_size_planned + rc_tol) ||                                     (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv) ||                   (b1 > rc->buffer_fill - buffer_left_planned * 0.5f)) )               //预测大小超出 增大qpm        {            rc->qpm += step_size;            b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;        }        float b_max = b1 + ((rc->buffer_fill - rc->buffer_size + rc7->buffer_rate) * 0.90f - b1) * trust_coeff;        rc->qpm -= step_size;        float b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;        while( rc->qpm > qp_min  && rc->qpm < prev_row_qp               && (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)               && (b2 < max_frame_size)               && ((b2 < rc->frame_size_planned * 0.8f) || (b2 < b_max)) )        {            b1 = b2;            rc->qpm -= step_size;            b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;        }        rc->qpm += step_size;        /* avoid VBV underflow or MinCR violation */        while( rc->qpm < qp_absolute_max && (b1 > max_frame_size) )        {            rc->qpm += step_size;            b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;        }        h->rc->frame_size_estimated = b1 - size_of_other_slices;//        /* If the current row was large enough to cause a large QP jump, try re-encoding it. */        if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row )   //如果调整后QP超出范围,重编当前行        {            /* Bump QP to halfway in between... close enough. */            rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max );            rc->qpa_rc = rc->qpa_rc_prev;            rc->qpa_aq = rc->qpa_aq_prev;            h->fdec->i_row_bits[y] = 0;            h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;            return -1;        }    }    else    {        h->rc->frame_size_estimated = bits_so_far;        //用来参与更新下一帧的vbv plan        /* Last-ditch attempt: if the last row of the frame underflowed the VBV,         * try again. */        if( rc->qpm < qp_max && can_reencode_row          //如果overflow,重编最后一行            && (h->rc->frame_size_estimated + size_of_other_slices > X264_MIN( rc->frame_size_maximum, rc->buffer_fill )) )        {            rc->qpm = qp_max;            rc->qpa_rc = rc->qpa_rc_prev;            rc->qpa_aq = rc->qpa_aq_prev;            h->fdec->i_row_bits[y] = 0;            h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;            return -1;        }    }    rc->qpa_rc_prev = rc->qpa_rc;    rc->qpa_aq_prev = rc->qpa_aq;    return 0;}


编完一帧后,会在x264_ratecontrol_end()计算该帧的一些数据 如各种宏块类型的数量、平均QP、写入stat file(2 pass),更新VBV buffer状态和上面提到的rate factor。

 

参考内容:

UnderstandingRate Control Modes (x264, x265)

http://slhck.info/video/2017/03/01/rate-control.html

x264源码分析与应用示例(二)——码率控制

http://blog.csdn.net/nonmarking/article/details/50737198

x264 自适应量化模式 (AQ Adaptive Quantization) 初探

http://blog.csdn.net/ljb_wh/article/details/15815063

X264码率控制总结2——x264码率控制方法概述

http://blog.csdn.net/chenchong_219/article/details/43941641







原创粉丝点击