CS231n-assignment1-KNN篇

来源:互联网 发布:mac安装win7虚拟机 编辑:程序博客网 时间:2024/05/16 14:08

最近在学习斯坦福大学的CS231n课程,此为作业一的KNN,能力有限,也是第一次写博客记录自己的学习心得,望各位看官勿喷,其他的作业之后也会陆续给出自己的答案。

附上源视频和笔记:

网易云课程视频及笔记链接: http://study.163.com/course/courseMain.htm?courseId=1003223001

想听原版的可以转B站

作业网址:http://cs231n.stanford.edu/

knn原理很简单,想必大家都知道,和物以类聚,人以群分一个道理。在这里就不介绍了,

环境为Spyder(Python2.7)不过相信其他也应该没啥问题,官方给出的knn.ipynb很有用,我也是参考了很多这里面的内容,推荐大家一定要好好看看,里面的代码很简洁也易懂

NOTE:为了方便起见,把data_utils.py和k_nearest_neighbor.py,同时在此目录下新加了knntest.py用于cifar-10数据集的训练和测试.

废话不多说,直接上代码

k_neraest_neighbor.py

import numpy as np#from past.builtins import xrangeclass KNearestNeighbor(object):  """ a kNN classifier with L2 distance """  def __init__(self):    pass  def train(self, X, y):    """    Train the classifier. For k-nearest neighbors this is just     memorizing the training data.    Inputs:    - X: A numpy array of shape (num_train, D) containing the training data      consisting of num_train samples each of dimension D.    - y: A numpy array of shape (N,) containing the training labels, where         y[i] is the label for X[i].    """    self.X_train = X    self.y_train = y      def predict(self, X, k=1, num_loops=0):    """    Predict labels for test data using this classifier.    Inputs:    - X: A numpy array of shape (num_test, D) containing test data consisting         of num_test samples each of dimension D.    - k: The number of nearest neighbors that vote for the predicted labels.    - num_loops: Determines which implementation to use to compute distances      between training points and testing points.    Returns:    - y: A numpy array of shape (num_test,) containing predicted labels for the      test data, where y[i] is the predicted label for the test point X[i].      """    if num_loops == 0:      dists = self.compute_distances_no_loops(X)    elif num_loops == 1:      dists = self.compute_distances_one_loop(X)    elif num_loops == 2:      dists = self.compute_distances_two_loops(X)    else:      raise ValueError('Invalid value %d for num_loops' % num_loops)    return self.predict_labels(dists, k=k)  def compute_distances_two_loops(self, X):    """    Compute the distance between each test point in X and each training point    in self.X_train using a nested loop over both the training data and the     test data.    Inputs:    - X: A numpy array of shape (num_test, D) containing test data.    Returns:    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]      is the Euclidean distance between the ith test point and the jth training      point.    """    num_test = X.shape[0]    num_train = self.X_train.shape[0]    dists = np.zeros((num_test, num_train))    for i in xrange(num_test):      for j in xrange(num_train):        #####################################################################        # TODO:                                                             #        # Compute the l2 distance between the ith test point and the jth    #        # training point, and store the result in dists[i, j]. You should   #        # not use a loop over dimension.                                    #        #####################################################################        dists[i,j]=np.sqrt(np.sum(np.square((self.X_train[j,:]-X[i,:]))))        pass        #####################################################################        #                       END OF YOUR CODE                            #        #####################################################################    return dists  def compute_distances_one_loop(self, X):    """    Compute the distance between each test point in X and each training point    in self.X_train using a single loop over the test data.    Input / Output: Same as compute_distances_two_loops    """    num_test = X.shape[0]    num_train = self.X_train.shape[0]    dists = np.zeros((num_test, num_train))    for i in xrange(num_test):      #######################################################################      # TODO:                                                               #      # Compute the l2 distance between the ith test point and all training #      # points, and store the result in dists[i, :].                        #      #######################################################################      dists[i,:]=np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis=1))      pass      #######################################################################      #                         END OF YOUR CODE                            #      #######################################################################    return dists  def compute_distances_no_loops(self, X):    """    Compute the distance between each test point in X and each training point    in self.X_train using no explicit loops.    Input / Output: Same as compute_distances_two_loops    """    num_test = X.shape[0]    num_train = self.X_train.shape[0]    dists = np.zeros((num_test, num_train))     #########################################################################    # TODO:                                                                 #    # Compute the l2 distance between all test points and all training      #    # points without using any explicit loops, and store the result in      #    # dists.                                                                #    #                                                                       #    # You should implement this function using only basic array operations; #    # in particular you should not use functions from scipy.                #    #                                                                       #    # HINT: Try to formulate the l2 distance using matrix multiplication    #    #       and two broadcast sums.                                         #    #########################################################################    dists=np.multiply(np.dot(X,self.X_train.T),-2)    Xsq=np.sum(np.square(X),axis=1,keepdims=True)    X_trainsq=np.sum(np.square(self.X_train),axis=1)    dists=np.add(dists,Xsq)    dists=np.add(dists,X_trainsq)    dists=np.sqrt(dists)    pass    #########################################################################    #                         END OF YOUR CODE                              #    #########################################################################    return dists  def predict_labels(self, dists, k=1):    """    Given a matrix of distances between test points and training points,    predict a label for each test point.    Inputs:    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]      gives the distance betwen the ith test point and the jth training point.    Returns:    - y: A numpy array of shape (num_test,) containing predicted labels for the      test data, where y[i] is the predicted label for the test point X[i].      """    num_test = dists.shape[0]    y_pred = np.zeros(num_test)    for i in xrange(num_test):      # A list of length k storing the labels of the k nearest neighbors to      # the ith test point.      closest_y = []      #########################################################################      # TODO:                                                                 #      # Use the distance matrix to find the k nearest neighbors of the ith    #      # testing point, and use self.y_train to find the labels of these       #      # neighbors. Store these labels in closest_y.                           #      # Hint: Look up the function numpy.argsort.                             #      #########################################################################      ##closest_y[i]=self.y_train[argmax(dists[i,:])]      closest_y=np.argsort(dists[i,:])           closest_y=self.y_train[closest_y[:k]]      pass      #########################################################################      # TODO:                                                                 #      # Now that you have found the labels of the k nearest neighbors, you    #      # need to find the most common label in the list closest_y of labels.   #      # Store this label in y_pred[i]. Break ties by choosing the smaller     #      # label.                                                                #      #########################################################################      d = dict.fromkeys(closest_y,0)      for key in closest_y:        d[key]+=1      y_pred[i]=max(d,key=lambda x: d[x])      pass      #########################################################################      #                           END OF YOUR CODE                            #       #########################################################################    return y_pred

k_neraest_neighbor.py里面的内容不需要说什么的,官方已经写好很多了,也很详细,自己需要添加的没多少。读者可以自己看,本人编程有限,写的代码丑勿喷。

knntest.py

from k_nearest_neighbor import KNearestNeighbor#import randomimport numpy as npfrom data_utils import load_CIFAR10import matplotlib.pyplot as plt# Load the raw CIFAR-10 data.
#注意更改为自己cifar-10-batch-py的路径cifar10_dir = 'C:/to/you/path/assignment1/cs231n/datasets/cifar-10-batches-py'X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
#我没有使用全部数据集,只取了1/10,大家自己用的时候可以使用全部的,即把下面4条语句注释掉即可X_train=X_train[:5000,]y_train=y_train[:5000]X_test=X_test[:1000,]y_test=y_test[:1000]num_test=X_test.shape[0]num_train=X_train.shape[0]# As a sanity check, we print out the size of the training and test data.print 'Training data shape: ', X_train.shapeprint 'Training labels shape: ', y_train.shapeprint 'Test data shape: ', X_test.shapeprint 'Test labels shape: ', y_test.shape# Reshape the image data into rowsX_train = np.reshape(X_train, (X_train.shape[0], -1))X_test = np.reshape(X_test, (X_test.shape[0], -1))print X_train.shape, X_test.shape# Create a kNN classifier instance. # Remember that training a kNN classifier is a noop: # the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor()classifier.train(X_train, y_train)'''# Now implement the function predict_labels and run the code below:# We use k = 1 (which is Nearest Neighbor).y_test_pred = classifier.predict_labels(dists, k=1)# Compute and print the fraction of correctly predicted examplesnum_correct = np.sum(y_test_pred == y_test)accuracy = float(num_correct) / num_testprint 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)'''###Cross-validationnum_folds = 5k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]#k_choices=range(1,11)X_train_folds = []y_train_folds = []################################################################################# TODO:                                                                        ## Split up the training data into folds. After splitting, X_train_folds and    ## y_train_folds should each be lists of length num_folds, where                ## y_train_folds[i] is the label vector for the points in X_train_folds[i].     ## Hint: Look up the numpy array_split function.                                #################################################################################X_train_folds = np.array_split(X_train, num_folds, axis=0)y_train_folds = np.array_split(y_train, num_folds, axis=0)#################################################################################                                 END OF YOUR CODE                             ################################################################################## A dictionary holding the accuracies for different values of k that we find# when running cross-validation. After running cross-validation,# k_to_accuracies[k] should be a list of length num_folds giving the different# accuracy values that we found when using that value of k.k_to_accuracies = {}################################################################################# TODO:                                                                        ## Perform k-fold cross validation to find the best value of k. For each        ## possible value of k, run the k-nearest-neighbor algorithm num_folds times,   ## where in each case you use all but one of the folds as training data and the ## last fold as a validation set. Store the accuracies for all fold and all     ## values of k in the k_to_accuracies dictionary.                               #################################################################################for k in k_choices:        k_to_accuracies[k] = []    for val_idx in range(num_folds):                X_val = X_train_folds[val_idx]        y_val = y_train_folds[val_idx]                X_tra = X_train_folds[:val_idx] + X_train_folds[val_idx + 1:]        X_tra = np.reshape(X_tra, (X_train.shape[0] - X_val.shape[0], -1))        y_tra = y_train_folds[:val_idx] + y_train_folds[val_idx + 1:]        y_tra = np.reshape(y_tra, (X_train.shape[0] - X_val.shape[0],))                classifier.train(X_tra, y_tra)        y_val_pre = classifier.predict(X_val, k, 0)                right_arr = y_val_pre == y_val        accuracy = float(np.sum(right_arr)) / y_val.shape[0]        k_to_accuracies[k].append(accuracy)            #################################################################################                                 END OF YOUR CODE                             ################################################################################## plot the raw observationsprint k_choicesprint k_to_accuraciesfor k in k_choices:  accuracies = k_to_accuracies[k]  plt.scatter([k] * len(accuracies), accuracies)# plot the trend line with error bars that correspond to standard deviationaccuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)plt.title('Cross-validation on k')plt.xlabel('k')plt.ylabel('Cross-validation accuracy')plt.show()#下面这个循环是我自己写的,目的是找出经过交叉验证后最佳K值temp=0best_k=0# Print out the computed accuraciesfor k in sorted(k_to_accuracies):    sumaccu=0    for accuracy in k_to_accuracies[k]:        sumaccu+=accuracy     #        print 'k = %d, accuracy = %f' % (k, accuracy)    if sumaccu>temp:    best_k=k        temp=sumaccu        #temp=sumaccuprint 'the best K is ',best_k#最佳K值# Based on the cross-validation results above, choose the best value for k,   # retrain the classifier using all the training data, and test it on the test# data. You should be able to get above 28% accuracy on the test data.# best_k=3,#这是knn.ipynb给的k值classifier = KNearestNeighbor()classifier.train(X_train, y_train)y_test_pred = classifier.predict(X_test, k=best_k)# Compute and display the accuracy
num_correct = np.sum(y_test_pred == y_test)accuracy = float(num_correct) / num_testprint 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)
NOTE:注意更改自己的数据集路径,

接下来,提出自己的结果







原创粉丝点击