【撸码caffe 五】数据层搭建

来源:互联网 发布:手机微信无法连接网络 编辑:程序博客网 时间:2024/06/02 07:19

caffe.cpp中的train函数内声明了一个类型为Solver类的智能指针solver:


// Train / Finetune a model.int train() {……  shared_ptr<caffe::Solver<float> >      solver(caffe::SolverRegistry<float>::CreateSolver(solver_param));……  }


之后调用Solver类的构造函数,在构造函数内执行了 Init(param)函数:

template <typename Dtype>Solver<Dtype>::Solver(const SolverParameter& param, const Solver* root_solver)    : net_(), callbacks_(), root_solver_(root_solver),      requested_early_exit_(false) {  Init(param);}

param是一个SolverParameter类对象,SolverParameter类继承自google的protobuf类,在类内定义了网络模型的参数和对网络的各种操作。

在Init函数里,又分别执行了一个InitTrainNet和InitTestNet函数,功能分别是构建训练网络和测试网络:

template <typename Dtype>void Solver<Dtype>::Init(const SolverParameter& param) {  ……  InitTrainNet();  if (Caffe::root_solver()) {    InitTestNets();    LOG(INFO) << "Solver scaffolding done.";  }  ……}

InitTrainNet函数里执行了一些检查工作,接着判断是否是root_solver,之后在net_.reset函数的入参里,以net_param为参数实例化了一个Net类对象:

template <typename Dtype>void Solver<Dtype>::InitTrainNet() {  ……  if (Caffe::root_solver()) {    net_.reset(new Net<Dtype>(net_param));  } else {    net_.reset(new Net<Dtype>(net_param, root_solver_->net_.get()));  }}


在Net的构造函数里,执行了Net类的Init函数,这个Init函数完成了网络模型各个层的构建工作:

template <typename Dtype>Net<Dtype>::Net(const NetParameter& param, const Net* root_net)    : root_net_(root_net) {  Init(param);}


param.layer_size()函数获取到传入的param模型的网络层数,通过for循环,逐个构建网络的每个层,在Lenet的训练网络中,一共有9层:

template <typename Dtype>void Net<Dtype>::Init(const NetParameter& in_param) {……for (int layer_id = 0; layer_id < param.layer_size(); ++layer_id) {……  layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]);……}}

SetUp是在layer.hpp中定义的,用于构建网络层,修改输出数据维度,以及设置损失权重:

void SetUp(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {    InitMutex();    CheckBlobCounts(bottom, top);//配置网络模型的每一层    LayerSetUp(bottom, top);//修改输出数据的维度    Reshape(bottom, top);//设置损失权重    SetLossWeights(top);  }


数据层是网络模型的最底层,用于把数据封装成blob送入到网络中执行训练,也是SetUp里LaverSetUp第一个配置的网络层,lenet_train_test.prototxt中定义的训练网络的数据层:

layer {  name: "mnist"  type: "Data"  top: "data"  top: "label"  include {    phase: TRAIN  }  transform_param {    scale: 0.00390625  }  data_param {    source: "D:/Software/Caffe/caffe-master/examples/mnist/mnist_train_lmdb"    batch_size: 64    backend: LMDB  }}

具体的数据层构建是在base_data_layer.cpp和data_layer.cpp中完成的。

base_data_layer.hpp:

#ifndef CAFFE_DATA_LAYERS_HPP_#define CAFFE_DATA_LAYERS_HPP_#include <vector>#include "caffe/blob.hpp"#include "caffe/data_transformer.hpp"#include "caffe/internal_thread.hpp"#include "caffe/layer.hpp"#include "caffe/proto/caffe.pb.h"#include "caffe/util/blocking_queue.hpp"namespace caffe {/** * @brief Provides base for data layers that feed blobs to the Net. * * TODO(dox): thorough documentation for Forward and proto params. */template <typename Dtype>//BaseDataLayer 继承自Layer类class BaseDataLayer : public Layer<Dtype> { public: //LayerParameter类型的参数param是传入的网络模型  explicit BaseDataLayer(const LayerParameter& param);  // LayerSetUp: implements common data layer setup functionality, and calls  // DataLayerSetUp to do special data layer setup for individual layer types.  // This method may not be overridden except by the BasePrefetchingDataLayer.  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top);  //数据层可以并行solvers共享  // Data layers should be shared by multiple solvers in parallel  virtual inline bool ShareInParallel() const { return true; }  //数据层设置  virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {}  //数据层没有更底层,所有不涉及维度变换  // Data layers have no bottoms, so reshaping is trivial.  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {}  //cpu与gpu上的后向传播  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {} protected:  TransformationParameter transform_param_;  shared_ptr<DataTransformer<Dtype> > data_transformer_;  bool output_labels_;     //label标签};//Batch类包含数据和标签数据template <typename Dtype>class Batch { public:  Blob<Dtype> data_, label_;};template <typename Dtype>class BasePrefetchingDataLayer :    public BaseDataLayer<Dtype>, public InternalThread { public:  explicit BasePrefetchingDataLayer(const LayerParameter& param);  // LayerSetUp: implements common data layer setup functionality, and calls  // DataLayerSetUp to do special data layer setup for individual layer types.  // This method may not be overridden.  void LayerSetUp(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top);  //数据层的前向传播  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top);  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top);  //GPU预先读取的batches组  // Prefetches batches (asynchronously if to GPU memory)  static const int PREFETCH_COUNT = 3; protected:  virtual void InternalThreadEntry();  //加载batch  virtual void load_batch(Batch<Dtype>* batch) = 0;  //batch数值,包含PREFETCH_COUNT个batch数据组  Batch<Dtype> prefetch_[PREFETCH_COUNT];  BlockingQueue<Batch<Dtype>*> prefetch_free_;  BlockingQueue<Batch<Dtype>*> prefetch_full_;  Blob<Dtype> transformed_data_;};}  // namespace caffe#endif  // CAFFE_DATA_LAYERS_HPP_

base_data_layer.cpp:

#include <boost/thread.hpp>#include <vector>#include "caffe/blob.hpp"#include "caffe/data_transformer.hpp"#include "caffe/internal_thread.hpp"#include "caffe/layer.hpp"#include "caffe/layers/base_data_layer.hpp"#include "caffe/proto/caffe.pb.h"#include "caffe/util/blocking_queue.hpp"namespace caffe {template <typename Dtype>//BaseDataLayer 类继承自Layer类BaseDataLayer<Dtype>::BaseDataLayer(const LayerParameter& param)    : Layer<Dtype>(param),      transform_param_(param.transform_param()) {}//数据层设置template <typename Dtype>void BaseDataLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {  if (top.size() == 1) {   //判断数据是否带label标签    output_labels_ = false;  } else {    output_labels_ = true;  }  //数据预处理  data_transformer_.reset(      new DataTransformer<Dtype>(transform_param_, this->phase_));  //生成随机数种子  data_transformer_->InitRand();  // The subclasses should setup the size of bottom and top  DataLayerSetUp(bottom, top);  //数据层设置}template <typename Dtype>BasePrefetchingDataLayer<Dtype>::BasePrefetchingDataLayer(    const LayerParameter& param)    : BaseDataLayer<Dtype>(param),      prefetch_free_(), prefetch_full_() {  for (int i = 0; i < PREFETCH_COUNT; ++i) {    prefetch_free_.push(&prefetch_[i]);  }}template <typename Dtype>void BasePrefetchingDataLayer<Dtype>::LayerSetUp(    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {  BaseDataLayer<Dtype>::LayerSetUp(bottom, top);  // Before starting the prefetch thread, we make cpu_data and gpu_data  // calls so that the prefetch thread does not accidentally make simultaneous  // cudaMalloc calls when the main thread is running. In some GPUs this  // seems to cause failures if we do not so.  for (int i = 0; i < PREFETCH_COUNT; ++i) {    prefetch_[i].data_.mutable_cpu_data();    if (this->output_labels_) {      prefetch_[i].label_.mutable_cpu_data();    }  }#ifndef CPU_ONLY  if (Caffe::mode() == Caffe::GPU) {    for (int i = 0; i < PREFETCH_COUNT; ++i) {prefetch_[i].data_.mutable_gpu_data();   //依次给队列中每个batch的数据blob分配cpu内存      if (this->output_labels_) {        prefetch_[i].label_.mutable_gpu_data(); //依次给队列中每个batch的标签blob分配cpu内存      }    }  }#endif  DLOG(INFO) << "Initializing prefetch";  //初始化预取数据  this->data_transformer_->InitRand();   //随机数种子,每次随机取  StartInternalThread();   //启动读取数据线程  DLOG(INFO) << "Prefetch initialized.";  //预取数据初始化完成}template <typename Dtype>void BasePrefetchingDataLayer<Dtype>::InternalThreadEntry() {#ifndef CPU_ONLY  cudaStream_t stream;  if (Caffe::mode() == Caffe::GPU) {    CUDA_CHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));  }#endif  try {    while (!must_stop()) {      Batch<Dtype>* batch = prefetch_free_.pop();      load_batch(batch);#ifndef CPU_ONLY      if (Caffe::mode() == Caffe::GPU) {        batch->data_.data().get()->async_gpu_push(stream);        CUDA_CHECK(cudaStreamSynchronize(stream));      }#endif      prefetch_full_.push(batch);    }  } catch (boost::thread_interrupted&) {    // Interrupted exception is expected on shutdown  }#ifndef CPU_ONLY  if (Caffe::mode() == Caffe::GPU) {    CUDA_CHECK(cudaStreamDestroy(stream));  }#endif}// 将预处理过的batch,送到top// 数据层的forward函数不进行计算,不使用bottom,只是准备数据,填充到toptemplate <typename Dtype>void BasePrefetchingDataLayer<Dtype>::Forward_cpu(    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {  Batch<Dtype>* batch = prefetch_full_.pop("Data layer prefetch queue empty");  // Reshape to loaded data.  //调整数据维度,一次读取一个batch大小的数据  top[0]->ReshapeLike(batch->data_);  // Copy the data  caffe_copy(batch->data_.count(), batch->data_.cpu_data(),             top[0]->mutable_cpu_data());  //拷贝数据到输出中  DLOG(INFO) << "Prefetch copied";  if (this->output_labels_) {    // Reshape to loaded labels.    top[1]->ReshapeLike(batch->label_);    // Copy the labels.    caffe_copy(batch->label_.count(), batch->label_.cpu_data(),        top[1]->mutable_cpu_data());   //拷贝标签到输出中  }  prefetch_free_.push(batch);}#ifdef CPU_ONLYSTUB_GPU_FORWARD(BasePrefetchingDataLayer, Forward);#endifINSTANTIATE_CLASS(BaseDataLayer);INSTANTIATE_CLASS(BasePrefetchingDataLayer);}  // namespace caffe

data_layer.cpp:

template <typename Dtype>  DataLayer<Dtype>::DataLayer(const LayerParameter& param)    : BasePrefetchingDataLayer<Dtype>(param),      reader_(param) {  }      template <typename Dtype>  DataLayer<Dtype>::~DataLayer() {    this->StopInternalThread();  }      //主要工作是:Reshape top blob 和 prefetch得到的batch的data_ blob、label_ blob  template <typename Dtype>  void DataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,        const vector<Blob<Dtype>*>& top) {    const int batch_size = this->layer_param_.data_param().batch_size();    // Read a data point, and use it to initialize the top blob.    Datum& datum = *(reader_.full().peek());        // Use data_transformer to infer the expected blob shape from datum.    vector<int> top_shape = this->data_transformer_->InferBlobShape(datum);    this->transformed_data_.Reshape(top_shape);//transformed_data_只是存储一张图片的数据,所以'0'维度依旧保持默认值'1'    // Reshape top[0] and prefetch_data according to the batch_size.    top_shape[0] = batch_size;//InferBlobShape(datum)返回的top_shape[0]为1    top[0]->Reshape(top_shape);    for (int i = 0; i < this->PREFETCH_COUNT; ++i) {      this->prefetch_[i].data_.Reshape(top_shape);    }    LOG(INFO) << "output data size: " << top[0]->num() << ","        << top[0]->channels() << "," << top[0]->height() << ","        << top[0]->width();    // label    if (this->output_labels_) {      vector<int> label_shape(1, batch_size);      top[1]->Reshape(label_shape);      for (int i = 0; i < this->PREFETCH_COUNT; ++i) {        this->prefetch_[i].label_.Reshape(label_shape);      }    }  }      // This function is called on prefetch thread  // 经过load_batch后,batch所指的数据显然发生了变化——> 虽然是以&(this->transformed_data_作为实参传递给Transform但是该地址与batch的data_ blob中每张图片的地址是相吻合的。  // load_batch(Batch<Dtype>* batch)方法Reshape了其中的data_ Blob,并且更新了数据成员transformed_data_。  // 因为Batch<Dtype>* batch仅仅是个指针,对其Reshape已经为这个Blob分配了所需要的内存,做到这一点已经足够了,毕竟prefetch_free_成员里存储的也只是指针。  template<typename Dtype>  void DataLayer<Dtype>::load_batch(Batch<Dtype>* batch) {    CPUTimer batch_timer;    batch_timer.Start();    double read_time = 0;    double trans_time = 0;    CPUTimer timer;    //返回count_。count_表示Blob存储的元素个数(shape_所有元素乘积). 如果是默认构造函数构造Blob,count_ capacity_为0。    //但是,经过Datalayer::DataLayerSetup函数的调用后,btach中data_/label_ blob都已经Reshape了,所以cout_,capacity_就不再为0了。    CHECK(batch->data_.count());    CHECK(this->transformed_data_.count());        // Reshape according to the first datum of each batch    // on single input batches allows for inputs of varying dimension.    const int batch_size = this->layer_param_.data_param().batch_size();    Datum& datum = *(reader_.full().peek());    // Use data_transformer to infer the expected blob shape from datum.    vector<int> top_shape = this->data_transformer_->InferBlobShape(datum);//从reader_中获取一个datum来猜测top_shape。    this->transformed_data_.Reshape(top_shape);    // Reshape batch according to the batch_size.    top_shape[0] = batch_size;    batch->data_.Reshape(top_shape);//reshape data_ blob的大小        Dtype* top_data = batch->data_.mutable_cpu_data();    Dtype* top_label = NULL;  // suppress warnings about uninitialized variables        if (this->output_labels_) {      top_label = batch->label_.mutable_cpu_data();    }    for (int item_id = 0; item_id < batch_size; ++item_id) {      timer.Start();      // get a datum      Datum& datum = *(reader_.full().pop("Waiting for data"));//从reader_获取一张图片的Datum.      read_time += timer.MicroSeconds();      timer.Start();      // Apply data transformations (mirror, scale, crop...)      int offset = batch->data_.offset(item_id);//获取一张图片的offset,然后transform      //设置this->transformed_data_这个Blob的data_成员所指向的SyncedMemory类型对象的CPU内存指针cpu_ptr_设置为"top_data + offset"。      this->transformed_data_.set_cpu_data(top_data + offset);//简言之,将cpu_ptr定位到batch的data_ blob的"top_data + offset"位置处,使其指向当前即将要处理的一张图片,其实真实的过程是拷贝datum中的数据(或经过处理)至this->transformed_data_所指处。通过for循环,处理每张图片,从而更新transformed_data_。      this->data_transformer_->Transform(datum, &(this->transformed_data_));//调用后,this->transformed_data_所指向的内存会发生变化,即经过变换后的数据。如此更新数据成员transformed_data_,该成员是BasePrefetchingDataLayer类及其子类的数据成员      // Copy label.      if (this->output_labels_) {        top_label[item_id] = datum.label();      }      trans_time += timer.MicroSeconds();          reader_.free().push(const_cast<Datum*>(&datum));    }    timer.Stop();    batch_timer.Stop();    DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";    DLOG(INFO) << "     Read time: " << read_time / 1000 << " ms.";    DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";  }  


原创粉丝点击