【C】快速傅里叶变换(FFT)讲解及实现

来源:互联网 发布:无损播放软件排名 编辑:程序博客网 时间:2024/05/23 13:16

  • 引言
  • 基2FFT

1.引言

人类的求知欲是永无止境的,自1965年 T. W. Cooley 和 J. W. Tuky 在《Math. Computation, Vol, 19, 1965》发表了著名的《An algorithm for the machine calculation of complex Fourier series》,人们对有关傅里叶变换的改进和创新就从未止步。1984年,P. Dohamel 和 H. Hollmann 提出的分裂基快速算法,使得算法的运算速率上升到了新台阶。
直至今日,已提出的快速算法有多种,还有很多学者在不断研究探索新的快速算法。
本文仅介绍最经典的基2FFT算法原理及编程思想。

2.基2FFT

基2FFT算法分为两类:时域抽取法FFT(Decimation-In-Time FFT, 简称 DIT - FFT);
     频域抽取法FFT(Decimation-In-Frequnency FFT, 简称 DIF - FFT);

2.1 FFT 基本思想

对于信号的N点离散傅里叶变化(Discrete Fourier Transform, DFT),DFT的复乘次数为N*N, 复加次数为N*(N-1),当N = 1024时,N*N = 1048576,显然实时信号处理对时间的苛刻要求对应于当代硬件是一个矛盾。FFT算法就是不断二分DFT, 利用旋转因子W^m_N的周期性和对称性减少运算量。

周期性表现为:W^(m+iN)_N = e^( -j2*pi/N*(m+iN) ) = e^(-j2*pi/N*m - j2*pi*i) = e^(-j2*pi/N*m) = W^m_N
对称性表现为:W^(-m)_N = W^(N-m)_N  or  W^(m+N/2)_N = -W^m_N

2.2 时域抽取法 基FFT 基本原理

  • 序列x(n)长度为16,满足N=2^M
  • 将序列按照n的奇偶性二分:x(2r)  and x(2r+1)  
  • 再二分,分到不可二分结束。
  • X(k)         = X1(k) + W^k_N*X2(k)
  • X(k+N/2) = X1(k) + W^k_N*X2(k)
  • 即   X(0) + X(0+16/2)   =   X(0)+X(8)      =   X1(0)
  •       X1(0)+X1(0+8/2)   =   X1(0)+X(4)     =   X2(0)
  •       X2(0)+X2(0+4/2)   =   X2(0)+X2(2)   =   X3(0)
  •       X3(0)+X3(0+2/2)   =   X3(0)+X3(1)   =   X4(0)
16点 时域抽取法FFT(简称 DIT - FFT)


计算量:
  • 完成一次蝶形运算 =  1次复数乘法 + 两次复数加法;
  • 计算1个N点DFT    =  2个N/2点DFT +   N/2个蝶形运算。
  • 计算一个N/2点DFT  = (N/2)^2次复数乘法   +  (N/2)(N/2 - 1)次复数加法
  • 可见,一次分解,运算量将近一半
这里附一段大神的解释【更正了其中的一些小错误】:
  • 第一级,每个蝶形的两节点“距离”为1,第二级每个蝶形的两节点“距离”为2,第三级为4,第四级为8【参考上图去理解】
  • 由此推得,第m级蝶形运算,每个蝶形的两节点“距离”  为 Length = 2^(m-1)

  • 对于16级DIT_FFT,第一级有8组蝶形,每组一个蝶形;第二级有4个蝶形,每组两个蝶形;第三级有2个蝶形,每组四个蝶形;第四级有1个蝶形,每组有8个蝶形。

  • 旋转因子W^k_N的确定
  • 以16点FFT为列,第m级第k个旋转因子为, k = 0, 1, ... ,2^m-1, 即m级共有2^m-1个旋转因子。
  • 根据旋转因子的可约性,,所以第m级第k个旋转因子为
并且,这位大神提出,为提高FFT的运算速度,我们可以建立一个旋转因子数组,然后通过查表法实现。【实际上并不实用,仅适用于确定点数且不 再修改的条件下】
//complex WN[N_series] = //旋转因子数组{//为节省CPU计算时间,旋转因子采用查表法处理 // ★ 根据实际FFT的点数N_series,该表数据需自行修改 // 以下结果通过Excel自动生成 // WN[k].real =  cos(2*PI/N*k); // WN[k].img  = -sin(2*PI/N*k);}



16点 频域抽取法FFT(简称 DIF - FFT)

3.实现