转-哈夫曼压缩算法

来源:互联网 发布:淘宝企业店铺公示网站 编辑:程序博客网 时间:2024/06/09 23:06

通俗易懂的原文:http://blog.jobbole.com/20091/

我们直接来看示例,如果我们需要来压缩下面的字符串:

 “beep boop beer!” 

首先,我们先计算出每个字符出现的次数,我们得到下面这样一张表 :


然后,我把把这些东西放到Priority Queue中(用出现的次数据当 priority),我们可以看到,Priority Queue 是以Prioirry排序一个数组,如果Priority一样,会使用出现的次序排序:下面是我们得到的Priority Queue:

接下来就是我们的算法——把这个Priority Queue 转成二叉树。我们始终从queue的头取两个元素来构造一个二叉树(第一个元素是左结点,第二个是右结点),并把这两个元素的priority相加,并放回Priority中(再次注意,这里的Priority就是字符出现的次数),然后,我们得到下面的数据图表:

同样,我们再把前两个取出来,形成一个Priority为2+2=4的结点,然后再放回Priority Queue中 :

继续我们的算法(我们可以看到,这是一种自底向上的建树的过程):


最终我们会得到下面这样一棵二叉树:

此时,我们把这个树的左支编码为0,右支编码为1,这样我们就可以遍历这棵树得到字符的编码,比如:‘b’的编码是 00,’p’的编码是101, ‘r’的编码是1000。我们可以看到出现频率越多的会越在上层,编码也越短,出现频率越少的就越在下层,编码也越长


最终我们可以得到下面这张编码表:

这里需要注意一点,当我们encode的时候,我们是按“bit”来encode,decode也是通过bit来完成,比如,如果我们有这样的bitset “1011110111″ 那么其解码后就是 “pepe”。所以,我们需要通过这个二叉树建立我们Huffman编码和解码的字典表。

这里需要注意的一点是,我们的Huffman对各个字符的编码是不会冲突的,也就是说,不会存在某一个编码是另一个编码的前缀,不然的话就会大问题了。因为encode后的编码是没有分隔符的。

于是,对于我们的原始字符串  beep boop beer!

其对就能的二进制为 : 0110 0010 0110 0101 0110 0101 01110000 0010 0000 0110 0010 0110 1111 0110 1111 0111 0000 0010 0000 0110 0010 01100101 0110 0101 0111 0010 0010 0001

Huffman的编码为: 00111110 1011 0001 0010 1010 1100 1111 1000 1001