数据库优化手段

来源:互联网 发布:linux man pages 编辑:程序博客网 时间:2024/06/05 08:13

程序员级别的优化有哪些手段? 

(1)数据库的设置:如果你的数据库记录数不会超过30万条?如果你的数据库记录超过100万条?该如何设置数据库?一个或多个? 
(2)数据库表的设置:当你的某个数据库表记录超过100万级别,而且每天大量增长,这是一个不得不考虑的问题。如果你的系统浏览量很大,即使是30万条记录也是需要考虑的。 
(3)索引的使用:索引可以大大提高数据库访问速度。什么时候用?哪些字段使用? 
(4)存储过程的使用:存储过程终归是比较好的,但是如果需要维护成百上千的存储过程,未必是划算的工程。 
(5)高效的分页技术:数据库记录分页列表是大量必须使用的基本技术,怎样的分页是快速的? 

宗旨你需要从上述5个方面考虑数据库的优化。 

什么时候需要数据库优化? 
(1)编写代码之前; 
(2)系统速度慢了的时候; 

下面就是一些具体的优化技巧了。 

(1)超大量记录数据库的优化技巧 

如果你的数据库表记录有超过100万级别,而且不断增长中。可以采取两个手段: 
第一:将数据库表拆分到不同的库中,比如 tblMEMBER 就可以拆分到 DB1 与 DB2 中去。 
实际上,可以拆分到 DB001 ... DB100 甚至更多的库中间去。 
DB1 与 DB2 最好不在一块硬盘上。 
第二:如果更大量级的数据,则最好拆分到不同的数据库服务器中去。 

数据库的拆分带来的是查询等操作的复杂性。简单地可以通过 hash 或者 按序号 匹配不同的数据库。复杂一些,应该设置一个独立的应用服务器(软件)协调其中的操作。 

(2)中等量级数据库的优化技巧 

所谓中等量级数据库是指数据库100万-500万条记录左右(单个数据库表)。这样的数据库为了提高访问(响应)速度,可以将表拆分到更小的表。比如 tblMEMBER 可以拆分为 tblMEMBER_00 ... tblMEMBER_99 。 
这样可以保证每个表的记录数不超过50万,那速度是"相当"快了。 

(3)避免使用视图(viewport)与关联 

视图viewport与关联都是为了程序员处理相对复杂的数据管理提供方便的手段。万物有其利,必有其弊。视图和关联提高了编程效率,都会较大地影响数据库的访问效率(事实上并不像一般资料说介绍的的那样高效),因此如果是web应用,则建议一般不要使用视图与关联。 

(4)不要忘记索引(index)也不要滥用索引(index) 

索引是提高数据库效率的简单又高效的方法。只要是设置了数据库表(table),就不要忘记设置索引(index)。将索引设置在经常用于排序的字段上,其他字段就不要设置了。 
索引不是越多越好,也不是什么字段都适合建立索引的。数据重复性太多的字段不要设置索引。比如 tblMEMBER 的 iSex 字段只有 0 1 两个值,就不要设置索引。 

(5)二进制的 text image 等字段应该单独设置别的表中 

一般的数据库应用难免都需要保存比如描述、图片等信息;一般描述类信息用 text 字段,图片类信息用 image 字段;这里要说的是,不要将这些字段与其他字段放在一个表中。 
比如: 

> 纯文本方式> 打印
  1. tblMEMBER  
  2. id (int)  
  3. cName (varchar)(64)  
  4. cDescription (text)  
  5. bPhoto (image)  
  6. dDate (datetime)  
  7. 就应该拆分为3个表  
  8. tblMEMBER  
  9. id (int)  
  10. cName (varchar)(64)  
  11. dDate (datetime)  
  12. tblMEMBER_DESC  
  13. id (int)  
  14. cDescription (text)  
  15. dDate (datetime)  
  16. tblMEMBER_PHOTO  
  17. id (int)  
  18. bPhoto (image)  
  19. dDate (datetime)  

(6)不要使用文本类型的 id 

一般的数据库表都会以一个种子字段作为主键。可以在与不少年青的程序员朋友沟通过程中,发现他们很喜欢用字符串类型的作为系统的 id 号。 
比如:id = XX XX XX XX 这样的字符串,每两个位置代表不同的类别等含义。 
不知道是那本教材如此误人子弟,作出这样的表率 :< 
作为系统的 id 号,一定要使用数字型的。 

(7)数据库表table的字段field不要太多 

本以为无需说明,也是发现不少的朋友,为了省事,一股脑把所有的相关字段都放在一个表中间。这样做的后果便是,程序写起来简单了,运行效率下来了。 
无论字段多少,有两类字段是必须独立出去的:一是进程更新的字段,比如文章的点击次数字段iShow,二是二进制或者是text字段; 

(8)将字符串(varchar)比较变成数字型(int)比较 

每个系统都会有用户管理,其中必然有 昵称,密码,邮件等的字符串类型数据比较的问题。在数据库操作中,字符串比较的效率是相当低下的。因此遇到字符串的比较,必须将其转换为数字型比较。 
具体做法是:在数据库表中增加相应的数字字段,比如 cNickname -> iNickNumber ,其中 iNickNumber 的数值为 cNickname 的 哈希值(如何计算字符串的哈希值?请参阅本站的其他文章)。 
通过这样的转换,系统效率可以提高 100 倍哦!!! 

(9)为每个数据库表(table)设置 datetime 字段 

在许多情况下,很多的表是不需要 datetime 字段用于保存时间的。本文的建议是你应该为每个表都设置 datetime 字段,而且默认值为 getdate()。 
我们的经验是,datetime 是实数,占用字节不多;在进行系统维护,远程备份等环节都会发挥意想不到的效果。 

(10)适当使用存储过程(Stored Processing) 

存储过程(sp)已经被大大地宣传了,本文也不例外地赞许采用存储过程。本文的建议是只在下列情况才使用存储过程:一是一个业务处理是事务,包含了多个处理过程;二是一种处理被高频使用,使用存储过程可以提高效率; 

(11)使用高效的分页(ination)技术 

数据库记录分页列表是大量必须使用的基本技术,因此本文建议你在每个数据库中建立下面的存储过程: 

> 纯文本方式> 打印
  1. CREATE PROCEDURE xsp_ination  
  2. (  
  3. @tblName   varchar(64),                  
  4. @strGetFields varchar(256) = "*",   
  5. @fldName varchar(64)="",                  
  6. @PageSize   int = 20,                     
  7. @PageIndex  int = 1,                          
  8. @OrderType bit = 1,                       
  9. @strWhere  varchar(256) = ""      
  10. )  
  11. AS   
  12. BEGIN  
  13. declare @strSQL   varchar(1000)     
  14. declare @strTmp   varchar(110)       
  15. declare @strOrder varchar(400)     
  16. SET NOCOUNT ON  
  17. if @OrderType != 0  
  18.     begin  
  19.         set @strTmp = "<(select min"   
  20.         set @strOrder = " order by [" + @fldName +"] desc"   
  21.     end  
  22. else   
  23.     begin   
  24.         set @strTmp = ">(select max"   
  25.         set @strOrder = " order by [" + @fldName +"] asc"   
  26.     end   
  27. if @PageIndex = 1  
  28.     begin  
  29.         if @strWhere != ""     
  30.             set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from " + @tblName + " where " + @strWhere + " " + @strOrder  
  31.         else   
  32.             set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from "+ @tblName + " "+ @strOrder  
  33.     end  
  34. else   
  35.     begin  
  36.         set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from "  
  37.                             + @tblName + " where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from " + @tblName + " " + @strOrder + ") as tblTmp)"+ @strOrder  
  38.         if @strWhere != ""   
  39.             set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from "  
  40.                             + @tblName + " where [" + @fldName + "]" + @strTmp + "(["  
  41.                             + @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["   
  42.                             + @fldName + "] from " + @tblName + " where " + @strWhere + " "  
  43.                             + @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder   
  44.     end  
  45. EXEC (@strSQL)  
  46. if @@error=0 return 1  
  47. SET NOCOUNT OFF  
  48. END  
  49. GO  


使用方法是(C#): 

> 纯文本方式> 打印
  1. sql = "EXEC [dbo].[xsp_ination] \"tblNEWS\",\"*\",\"id\",40," + pindex.ToString() + ",1,\"iType=" + type.ToString();  
  2. SqlDataReader sr = ExecuteReader(sql);  
  3. while (sr.Read())  
  4. {  
  5.    ...  
  6. }  
  7. sr.Close();  


上面的优化技巧仅是一些常见的手段,如果你的系统(小系统就算了)遇到效率问题,可以与联高软件联系。 

 

来源:http://www.legalsoft.com.cn/docs/968.html

 

 

=============================================================

本文首先讨论了基于第三范式的数据库表的基本设计,着重论述了建立主键和索引的策略和方案,然后从数据库表的扩展设计和库表对象的放置等角度概述了数据库管理系统的优化方案。 

关键词: 优化(Optimizing) 第三范式(3NF) 冗余数据(Redundant Data) 索引(Index) 数据分割(Data Partitioning) 对象放置(Object Placement) 

1 引言 

数 据库优化的目标无非是避免磁盘I/O瓶颈、减少CPU利用率和减少资源竞争。为了便于读者阅读和理解,笔者参阅了Sybase、Informix和 Oracle等大型数据库系统参考资料,基于多年的工程实践经验,从基本表设计、扩展设计和数据库表对象放置等角度进行讨论,着重讨论了如何避免磁盘 I/O瓶颈和减少资源竞争,相信读者会一目了然。 

2 基于第三范式的基本表设计 

在基于表驱动的信息管理系统(MIS)中,基本表的 设计规范是第三范式(3NF)。第三范式的基本特征是非主键属性只依赖于主键属性。基于第三范式的数据库表设计具有很多优点:一是消除了冗余数据,节省了 磁盘存储空间;二是有良好的数据完整性限制,即基于主外键的参照完整限制和基于主键的实体完整性限制,这使得数据容易维护,也容易移植和更新;三是数据的 可逆性好,在做连接(Join)查询或者合并表时不遗漏、也不重复;四是因消除了冗余数据(冗余列),在查询(Select)时每个数据页存的数据行就 多,这样就有效地减少了逻辑I/O,每个Cash存的页面就多,也减少物理I/O;五是对大多数事务(Transaction)而言,运行性能好;六是物 理设计(Physical Design)的机动性较大,能满足日益增长的用户需求。 

在基本表设计中,表的主键、外键、索引设计占有非常重要的地位,但系统设计人员往往只注重于满足用户要求,而没有从系统优化的高度来认识和重视它们。实际上,它们与系统的运行性能密切相关。现在从系统数据库优化角度讨论这些基本概念及其重要意义: 

 

(1) 主键(Primary Key):主键被用于复杂的SQL语句时,频繁地在数据访问中被用到。一个表只有一个主键。主键应该有固定值(不能为Null或缺省值,要有相对稳定 性),不含代码信息,易访问。把常用(众所周知)的列作为主键才有意义。短主键最佳(小于25bytes),主键的长短影响索引的大小,索引的大小影响索 引页的大小,从而影响磁盘I/O。主键分为自然主键和人为主键。自然主键由实体的属性构成,自然主键可以是复合性的,在形成复合主键时,主键列不能太多, 复合主键使得Join*作复杂化、也增加了外键表的大小。人为主键是,在没有合适的自然属性键、或自然属性复杂或灵敏度高时,人为形成的。人为主键一般是 整型值(满足最小化要求),没有实际意义,也略微增加了表的大小;但减少了把它作为外键的表的大小。 

 

(2)外键(Foreign Key):外键的作用是建立关系型数据库中表之间的关系(参照完整性),主键只能从独立的实体迁移到非独立的实体,成为后者的一个属性,被称为外键。 

 

(3) 索引(Index):利用索引优化系统性能是显而易见的,对所有常用于查询中的Where子句的列和所有用于排序的列创建索引,可以避免整表扫描或访问, 在不改变表的物理结构的情况下,直接访问特定的数据列,这样减少数据存取时间;利用索引可以优化或排除耗时的分类*作;把数据分散到不同的页面上,就分散 了插入的数据;主键自动建立了唯一索引,因此唯一索引也能确保数据的唯一性(即实体完整性);索引码越小,定位就越直接;新建的索引效能最好,因此定期更 新索引非常必要。索引也有代价:有空间开销,建立它也要花费时间,在进行Insert、Delete和Update*作时,也有维护代价。索引有两种:聚 族索引和非聚族索引。一个表只能有一个聚族索引,可有多个非聚族索引。使用聚族索引查询数据要比使用非聚族索引快。在建索引前,应利用数据库系统函数估算 索引的大小。 

① 聚族索引(Clustered Index):聚族索引的数据页按物理有序储存,占用空间小。选择策略是,被用于Where子句的列:包括范围查询、模糊查询或高度重复的列(连续磁盘扫 描);被用于连接Join*作的列;被用于Order by和Group by子句的列。聚族索引不利于插入*作,另外没有必要用主键建聚族索引。 

② 非聚族索引(Nonclustered Index):与聚族索引相比,占用空间大,而且效率低。选择策略是,被用于Where子句的列:包括范围查询、模糊查询(在没有聚族索引时)、主键或外 键列、点(指针类)或小范围(返回的结果域小于整表数据的20%)查询;被用于连接Join*作的列、主键列(范围查询);被用于Order by和Group by子句的列;需要被覆盖的列。对只读表建多个非聚族索引有利。索引也有其弊端,一是创建索引要耗费时间,二是索引要占有大量磁盘空间,三是增加了维护代 价(在修改带索引的数据列时索引会减缓修改速度)。那么,在哪种情况下不建索引呢?对于小表(数据小于5页)、小到中表(不直接访问单行数据或结果集不用 排序)、单值域(返回值密集)、索引列值太长(大于20bitys)、容易变化的列、高度重复的列、Null值列,对没有被用于Where子语句和 Join查询的列都不能建索引。另外,对主要用于数据录入的,尽可能少建索引。当然,也要防止建立无效索引,当Where语句中多于5个条件时,维护索引 的开销大于索引的效益,这时,建立临时表存储有关数据更有效。 

批量导入数据时的注意事项:在实际应用中,大批量的计算(如电信话单计费)用C 语言程序做,这种基于主外键关系数据计算而得的批量数据(文本文件),可利用系统的自身功能函数(如Sybase的BCP命令)快速批量导入,在导入数据 库表时,可先删除相应库表的索引,这有利于加快导入速度,减少导入时间。在导入后再重建索引以便优化查询。 

 

(4)锁:锁是并行处理的重要机 制,能保持数据并发的一致性,即按事务进行处理;系统利用锁,保证数据完整性。因此,我们避免不了死锁,但在设计时可以充分考虑如何避免长事务,减少排它 锁时间,减少在事务中与用户的交互,杜绝让用户控制事务的长短;要避免批量数据同时执行,尤其是耗时并用到相同的数据表。锁的征用:一个表同时只能有一个 排它锁,一个用户用时,其它用户在等待。若用户数增加,则Server的性能下降,出现“假死”现象。如何避免死锁呢?从页级锁到行级锁,减少了锁征用; 给小表增加无效记录,从页级锁到行级锁没有影响,若在同一页内竞争有影响,可选择合适的聚族索引把数据分配到不同的页面;创建冗余表;保持事务简短;同一 批处理应该没有网络交互。 

 

(5)查询优化规则:在访问数据库表的数据(Access Data)时,要尽可能避免排序(Sort)、连接(Join)和相关子查询*作。经验告诉我们,在优化查询时,必须做到: 

① 尽可能少的行; 

② 避免排序或为尽可能少的行排序,若要做大量数据排序,最好将相关数据放在临时表中*作;用简单的键(列)排序,如整型或短字符串排序; 

③ 避免表内的相关子查询; 

④ 避免在Where子句中使用复杂的表达式或非起始的子字符串、用长字符串连接; 

⑤ 在Where子句中多使用“与”(And)连接,少使用“或”(Or)连接; 

⑥ 利用临时数据库。在查询多表、有多个连接、查询复杂、数据要过滤时,可以建临时表(索引)以减少I/O。但缺点是增加了空间开销。 

除非每个列都有索引支持,否则在有连接的查询时分别找出两个动态索引,放在工作表中重新排序。 

 

3 基本表扩展设计 

基 于第三范式设计的库表虽然有其优越性(见本文第一部分),然而在实际应用中有时不利于系统运行性能的优化:如需要部分数据时而要扫描整表,许多过程同时竞 争同一数据,反复用相同行计算相同的结果,过程从多表获取数据时引发大量的连接*作,当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。 

尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。 

如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。 

 

3.1 分割表或储存冗余数据 

分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。 

水 平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割 表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,最好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间 开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。 

垂 直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应 占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列 时,最好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立 即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到最大化利用Cache的目的。 

总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。 

注意,在分割表以后,要考虑重新建立索引。 

 

3.2 存储衍生数据 

对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明: 

若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。 

若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。 

若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。 

总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。 

 

3.3 消除昂贵结合 

对 于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的 相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式, 也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。 

 

4 数据库对象的放置策略 

数据库对象的放置策略是均匀地把数据分布在系统的磁盘中,平衡I/O访问,避免I/O瓶颈。 

⑴ 访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O运转,避免I/O竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。 

⑵ 分离系统数据库I/O和应用数据库I/O。把系统审计表和临时库表放在不忙的磁盘上。 

⑶ 把事务日志放在单独的磁盘上,减少磁盘I/O开销,这还有利于在障碍后恢复,提高了系统的安全性。 

⑷ 把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join*作的表分别放在单独的磁盘上,甚至把把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁盘上,避免I/O争夺; 

⑸ 利用段分离频繁访问的表及其索引(非聚族的)、分离文本和图像数据。段的目的是平衡I/O,避免瓶颈,增加吞吐量,实现并行扫描,提高并发度,最大化磁盘 的吞吐量。利用逻辑段功能,分别放置“活性”表及其非聚族索引以平衡I/O。当然最好利用系统的默认段。另外,利用段可以使备份和恢复数据更加灵活,使系 统授权更加灵活。

参考资料:http://www.xiaotianya.com/read-7-2026-1.html

来源:http://www.cnblogs.com/shenpeng1024/archive/2008/03/17/1110642.html


转载自:http://uule.iteye.com/blog/1499871

原创粉丝点击