傅立叶变换中的吉布斯(Gibbs)现象

来源:互联网 发布:vue服务端渲染 php 编辑:程序博客网 时间:2024/06/05 00:25

        每个学习过信号处理基本课程的人都知道吉布斯(Gibbs)现象:将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。吉布斯现象如下图所示。

                                                       

                                                                              图1 吉布斯现象示意图

        实际上,吉布斯现象最先并不是吉布斯发现的。科学家阿伯特·米切尔森(Albert Michelson)是第一个获得诺贝尔奖的美国人,他以米切尔森-莫利(Michelson-Morley)实验测量光速而闻名于世。但很多人不知道的是,他才是第一个发现吉布斯现象的人。

                                                                      

                                                                                     图2 米切尔森

                                                                         

                                                                                   图3 吉布斯

 
       1898年,米切尔森(Albert Michelson)做了一个谐波分析仪。该仪器可以计算任何一个周期信号x(t)的傅里叶级数截断后的近似式,其中N 可以算到 80。米切尔森用了很多函数来测试它的仪器 ,结果都很好。然而当他测试方波信号时,他得到一个重要的,令他吃惊的结果!他于是根据这一结果而怀疑起他的仪器是否有不完善的地方。他将这一问题写一封信给当时著名的数学物理学家吉布斯 (Josiah Gibbs),吉布斯检查了这一结果,并于1899年在《自然》杂志上发表了他的看法。若用x(t)表示原始信号,xN(t)表示有限项傅立叶级数合成所得的信号,米切尔森所观察到的有趣的现象是方波的xN(t)在不连续点附近部分呈现起伏,这个起伏的峰值大小似乎不随 N 增大而下降!吉布斯证明:情况确实是这样,而且也应该是这样。随着N 增加,部分和的起伏就向不连续点压缩,但是对任何有限的 N 值,起伏的峰值大小保持不变 ,这就是吉布斯现象。这个现象的含义是:一个不连续信号 x(t) 的傅里叶级数的截断近似 xN(t),一般来说,在接近不连续点处将呈现高频起伏和超量,而且,若在实际情况下利用这样一个近似式的话,就应该选择足够大的 N ,以保证这些起伏拥有的总能量可以忽略。当然,在极限情况下,近似误差的能量是零,而且一个不连续的信号(如方波)的傅里叶级数表示是收敛的。