IO复用——epoll内核源代码剖析

来源:互联网 发布:最优化方法第二版答案 编辑:程序博客网 时间:2024/05/16 17:53

*最近拖延症又犯了。。。嗯。。。废话不多说。。。直接上硬货。。。→_→*

比较select系统调用请戳传送门——select内核源代码剖析

了解poll机制请戳传送门——poll机制内核源代码剖析

  • epoll_create

这是Linux_3.0.12内核版本。。。和之前剖析的2.4.0内核版本的系统调用有一些差别。。。所以直接进SYSCALL_DEFINE1。。。

//为每一个监听的事件都分配一个epitem数据结构struct epitem {    /* RB tree node used to link this structure to the eventpoll RB tree */    //每个epitem都存放在eventpoll中以rbr为根的红黑树中    //rbn记录epitem在红黑树中的结点    struct rb_node rbn;    /* List header used to link this structure to the eventpoll ready list */    //每个就绪事件所对应的epitem都链入了eventpoll中的rdllink    //rdllink记录就绪链表头    struct list_head rdllink;    /*     * Works together "struct eventpoll"->ovflist in keeping the     * single linked chain of items.     */    //记录每个epitem在eventpoll数据结构中的ovflist的下一个epitem    struct epitem *next;    /* The file descriptor information this item refers to */    //epoll_filefd数据结构记录epitem所对应的struct file和fd文件描述符    struct epoll_filefd ffd;    /* Number of active wait queue attached to poll operations */    //poll操作上的等待队列个数    int nwait;    /* List containing poll wait queues */    //包含等待队列对头的单链表    struct list_head pwqlist;    /* The "container" of this item */    //记录epitem所属哪一个eventpoll数据结构    struct eventpoll *ep;    /* List header used to link this item to the "struct file" items list */    //记录epitem所对应的struct file的单链表    struct list_head fllink;    /* The structure that describe the interested events and the source fd */    //记录epitem对应的epoll_event数据结构,epoll_event是epoll_ctl函数传入的参数     struct epoll_event event;};
struct eventpoll {    /* Protect the access to this structure */    spinlock_t lock;    /*     * This mutex is used to ensure that files are not removed     * while epoll is using them. This is held during the event     * collection loop, the file cleanup path, the epoll file exit     * code and the ctl operations.     */    //对事件进行处理时,内核都都会持有这个互斥锁,因此在内核态中epoll的相关操作可以保证是线程安全的    struct mutex mtx;    /* Wait queue used by sys_epoll_wait() */    //调用sys_epoll_wait()时,存放当前进程的等待队列    wait_queue_head_t wq;    /* Wait queue used by file->poll() */    //此等待队列存放监听事件的poll操作    wait_queue_head_t poll_wait;    /* List of ready file descriptors */    //为每个事件都会分配一个epitem,当事件就绪时其所对应的epitem就会链入rdllist双向链表中    //epitem数据类型定义在上面    struct list_head rdllist;    /* RB tree root used to store monitored fd structs */    //为每个事件都会分配一个epitem,所有的epitem都会存放在这个红黑树中    struct rb_root rbr;    /*     * This is a single linked list that chains all the "struct epitem" that     * happened while transferring ready events to userspace w/out     * holding ->lock.     */    //就绪事件在转移到用户空间时,发生了就绪事件,其所对应的epitem被链入ovflist双向链表中    struct epitem *ovflist;    /* The user that created the eventpoll descriptor */    //保存用户信息,比如资源的上限值    struct user_struct *user;};
SYSCALL_DEFINE1(epoll_create1, int, flags){    int error;    //eventpoll是epoll中非常重要的数据结构!每一个epollfd都有一个对应的eventpoll数据结构    //eventpoll数据结构定义在上面    struct eventpoll *ep = NULL;    /* Check the EPOLL_* constant for consistency.  */    BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);    if (flags & ~EPOLL_CLOEXEC)        return -EINVAL;    /*     * Create the internal data structure ("struct eventpoll").     */    //初始化一个eventpoll数据结构    //ep_alloc定义在下面    error = ep_alloc(&ep);    if (error < 0)        return error;    /*     * Creates all the items needed to setup an eventpoll file. That is,     * a file structure and a free file descriptor.     */    //创建epollfd    //因为epollfd并不存在真正对应的文件,所以内核创建了一个虚拟的文件,并为这个虚拟文件分配struct file数据结构    //参数eventpoll_fops就是file operations,即文件支持的操作    //关于file operations在之前的poll机制内核源代码剖析一文中已经做了非常深入的解释    //这里简单解释一下,file operations中的每一个成员都是回调函数指针,对应每一种操作的具体实现    //epollfd文件实现了三种操作,即release、poll、llseek    //eventpoll_fops数据结构定义在下面    //参数ep就是epollfd所对应的eventpoll数据结构,在anon_inode_getfd中,将struct file的private_data成员赋值为ep的地址    //anon_inode_getfd定义在下面    error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,                 O_RDWR | (flags & O_CLOEXEC));    if (error < 0)        ep_free(ep);    //返回epollfd的值    return error;}SYSCALL_DEFINE1(epoll_create, int, size){    //实际上传入的size参数并没有什么用。。。    if (size <= 0)        return -EINVAL;    //sys_epoll_create1定义在上面    return sys_epoll_create1(0);}
static int ep_alloc(struct eventpoll **pep){    int error;    struct user_struct *user;    struct eventpoll *ep;    //获取当前用户信息    user = get_current_user();    error = -ENOMEM;    //通过kmalloc为eventpoll数据结构分配内存空间    ep = kzalloc(sizeof(*ep), GFP_KERNEL);    if (unlikely(!ep))        goto free_uid;    spin_lock_init(&ep->lock);    mutex_init(&ep->mtx);    //初始化eventpoll中的wq    init_waitqueue_head(&ep->wq);    //初始化eventpoll中的poll_wait    init_waitqueue_head(&ep->poll_wait);    //初始化存放就绪事件所对应的epitem的双向链表    INIT_LIST_HEAD(&ep->rdllist);    //初始化存放所有事件对应的epiitem的红黑树,初始值为NULL    //#define RB_ROOT   (struct rb_root) { NULL, }    ep->rbr = RB_ROOT;    //初始化转移到用户空间之前,存放就绪事件所对应的epitem的双向链表,初始值为-1L    //#define EP_UNACTIVE_PTR ((void *) -1L)    ep->ovflist = EP_UNACTIVE_PTR;    //初始化用户信息    ep->user = user;    //为eventpoll数据结构指针赋值    *pep = ep;    return 0;free_uid:    free_uid(user);    return error;}
//由此可见epollfd所对应的的匿名文件只实现了三种操作//release操作为释放epollfd所对应的eventpoll数据结构//ep_eventpoll_release定义在下面//poll操作为事件就绪时,调用poll操作对应的回调函数对当前进程进行一些列操作//ep_eventpoll_poll定义先放一边,在epoll_wait中会详细解释//llseek操作为获取匿名文件的游标偏移//noop_llseek定义在下面static const struct file_operations eventpoll_fops = {    .release    = ep_eventpoll_release,     .poll       = ep_eventpoll_poll,    .llseek     = noop_llseek,};
static int ep_eventpoll_release(struct inode *inode, struct file *file){    //通过struct file中的成员private_data得到epollfd所对应的eventpoll数据结构    struct eventpoll *ep = file->private_data;    //释放eventpoll数据结构    if (ep)        ep_free(ep);    return 0;}
loff_t noop_llseek(struct file *file, loff_t offset, int origin){    //返回当前文件的偏移量    return file->f_pos;}
int anon_inode_getfd(const char *name, const struct file_operations *fops,             void *priv, int flags){    int error, fd;    struct file *file;    //分配文件描述符,即epollfd    error = get_unused_fd_flags(flags);    if (error < 0)        return error;    fd = error;    //创建匿名文件    file = anon_inode_getfile(name, fops, priv, flags);    if (IS_ERR(file)) {        error = PTR_ERR(file);        goto err_put_unused_fd;    }    //将文件描述符fd和匿名文件绑定,即将file_struct中的fdtable的成员fd[fd]赋值为file    fd_install(fd, file);    //返回epollfd的值    return fd;err_put_unused_fd:    put_unused_fd(fd);    return error;}
  • epoll_ctl
struct epoll_event {    __u32 events; //epoll事件类型    __u64 data; //指定所要监听的事件的文件描述符} EPOLL_PACKED;
//参数epfd就是epoll_create中返回的epollfd//参数op指定对事件的操作类型,具体分为三种//#define EPOLL_CTL_ADD 1 添加新的监听事件//#define EPOLL_CTL_DEL 2 删除监听事件//#define EPOLL_CTL_MOD 3 修改监听事件//参数fd就是想要操作的文件描述符//参数event表示监听的是什么事件类型//数据可读事件EPOLLIN、高效工作事件模式EPOLLET、事件只被处理一次EPOLLONESHOT//epoll_event数据结构定义在上面SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,        struct epoll_event __user *, event){    int error;     int did_lock_epmutex = 0;    struct file *file, *tfile;    struct eventpoll *ep;    struct epitem *epi;    struct epoll_event epds;    error = -EFAULT;    //ep_op_has_event中为return op != EPOLL_CTL_DEL;即判断op操作是否为删除监听事件    //从用户拷贝epoll_event数据结构到内核空间    if (ep_op_has_event(op) &&        copy_from_user(&epds, event, sizeof(struct epoll_event)))        goto error_return;    /* Get the "struct file *" for the eventpoll file */    error = -EBADF;    //获取epollfd所对应的匿名文件struct file数据结构    file = fget(epfd);    if (!file)        goto error_return;    /* Get the "struct file *" for the target file */    //获取所要操作的文件描述符所对应的struct file数据结构    tfile = fget(fd);    if (!tfile)        goto error_fput;    /* The target file descriptor must support poll */    error = -EPERM;    //判断所要监听的事件是否支持文件操作或poll操作    if (!tfile->f_op || !tfile->f_op->poll)        goto error_tgt_fput;    /*     * We have to check that the file structure underneath the file descriptor     * the user passed to us _is_ an eventpoll file. And also we do not permit     * adding an epoll file descriptor inside itself.     */    error = -EINVAL;    //判断所要监听的事件是否是epollfd本身、判断所要监听的事件是否支持epoll对文件的三种操作    if (file == tfile || !is_file_epoll(file))        goto error_tgt_fput;    /*     * At this point it is safe to assume that the "private_data" contains     * our own data structure.     */    //从struct file数据结构中获取eventpoll数据结构    ep = file->private_data;    /*     * When we insert an epoll file descriptor, inside another epoll file     * descriptor, there is the change of creating closed loops, which are     * better be handled here, than in more critical paths.     *     * We hold epmutex across the loop check and the insert in this case, in     * order to prevent two separate inserts from racing and each doing the     * insert "at the same time" such that ep_loop_check passes on both     * before either one does the insert, thereby creating a cycle.     */    //检查监听的事件是否支持epoll对文件的三种操作且为添加事件    //当我们插入一个epoll文件描述符时,在另一个epoll文件描述符中,创建闭环,这在这里更好地处理,而不是更关键的路径。    //在这种情况下,我们保留epmutex的循环检查和插入,以防止两个单独的插入,并且每个插入“同时进行”,使得ep_loop_check在两个插入之前都通过,从而创建一个周期。    if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {        mutex_lock(&epmutex);        did_lock_epmutex = 1;        error = -ELOOP;        if (ep_loop_check(ep, tfile) != 0)            goto error_tgt_fput;    }    mutex_lock_nested(&ep->mtx, 0);    /*     * Try to lookup the file inside our RB tree, Since we grabbed "mtx"     * above, we can be sure to be able to use the item looked up by     * ep_find() till we release the mutex.     */    //epoll不允许重复添加fd    //在eventpoll数据结构中的rbr红黑树里,根据监听事件的struct和fd,与每一个epitem中的epoll_filefd数据结构进行比较    //找到返回监听事件对应的epitem,没有找到返回NULL    epi = ep_find(ep, tfile, fd);    error = -EINVAL;    //根据对事件的操作进行分类操作    switch (op) {    //添加新的监听事件    case EPOLL_CTL_ADD:        //如果之前不存在此事件才可以添加        if (!epi) {            //添加内核关心的事件类型POLLERR和POLLHUP            epds.events |= POLLERR | POLLHUP;            //真正的添加新的监听事件            //ep_insert定义在下面            error = ep_insert(ep, &epds, tfile, fd);        } else            error = -EEXIST;        break;    //删除事件    case EPOLL_CTL_DEL:        //如果存在此事件才可以删除        if (epi)            //ep_remove就不剖了。。            error = ep_remove(ep, epi);        else            error = -ENOENT;        break;    //修改事件    case EPOLL_CTL_MOD:        if (epi) {            epds.events |= POLLERR | POLLHUP;            //ep_modify就不剖了。。。            error = ep_modify(ep, epi, &epds);        } else            error = -ENOENT;        break;    }    mutex_unlock(&ep->mtx);error_tgt_fput:    if (unlikely(did_lock_epmutex))        mutex_unlock(&epmutex);    fput(tfile);error_fput:    fput(file);error_return:    return error;}
typedef struct poll_table_struct {    //poll_queue_proc就是当监听事件就绪时,对事件进行具体操作的回调函数    poll_queue_proc qproc;    //key记录对监听事件的何种event感兴趣    unsigned long key;} poll_table;
struct ep_pqueue {    //poll_table数据结构和poll回调函数机制有关    //poll_table数据结构定义在上面    poll_table pt;     //记录对应的epitem数据结构    struct epitem *epi;};
static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc){    //初始化poll机制的回调函数    pt->qproc = qproc;    //初始化感兴趣的事件类型,初值为对所有event都感兴趣    pt->key   = ~0UL; /* all events enabled */}
//ep参数为epollfd所对应的eventpoll数据结构//event参数为新监听事件的epoll事件类型,即epoll_event数据结构//tfile参数为新监听事件所对应的struct file数据结构//fd参数为新监听事件的文件描述符static int ep_insert(struct eventpoll *ep, struct epoll_event *event,             struct file *tfile, int fd){    int error, revents, pwake = 0;    unsigned long flags;    long user_watches;    struct epitem *epi;    struct ep_pqueue epq;    //将当前用户的监听事件数加1    user_watches = atomic_long_read(&ep->user->epoll_watches);    //判断是否超过当前用户的最大监听数    if (unlikely(user_watches >= max_user_watches))        return -ENOSPC;    //从slab中分配一个epitem数据结构    if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))        return -ENOMEM;    /* Item initialization follow here ... */    //初始化各个链表    INIT_LIST_HEAD(&epi->rdllink);    INIT_LIST_HEAD(&epi->fllink);    INIT_LIST_HEAD(&epi->pwqlist);    //记录epitem所对应的eventpoll数据结构    epi->ep = ep;    //在epitem中的epoll_filefd数据结构中记录新监听事件所对应的struct file数据结构和文件描述符fd    ep_set_ffd(&epi->ffd, tfile, fd);    //记录新监听事件,想要监听的事件类型    epi->event = *event;    //poll操作上的等待队列个数初始化为0    epi->nwait = 0;    //初始化epitem在eventpoll中的ovflist链表的后继为(void *) -1L    epi->next = EP_UNACTIVE_PTR;    /* Initialize the poll table using the queue callback */    //记录ep_pqueue中的epitem数据结构    //epq数据类型为ep_pqueue,ep_pqueue数据结构定义在上面    epq.epi = epi;    //初始化poll_table数据结构    //init_poll_funcptr定义在上面    init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);    /*     * Attach the item to the poll hooks and get current event bits.     * We can safely use the file* here because its usage count has     * been increased by the caller of this function. Note that after     * this operation completes, the poll callback can start hitting     * the new item.     */    //对监听事件所对应的struct file中的file operation中的poll操作进行初始化,即对poll回调函数进行初始化,详细的poll机制回调函数在之前已经做了详细说明    //返回值为已经就绪的事件    revents = tfile->f_op->poll(tfile, &epq.pt);    /*     * We have to check if something went wrong during the poll wait queue     * install process. Namely an allocation for a wait queue failed due     * high memory pressure.     */    error = -ENOMEM;    //如果内存不够,有可能导致等待队列分配失败,所以此时需要判断等待队列是否存在    if (epi->nwait < 0)        goto error_unregister;    /* Add the current item to the list of active epoll hook for this file */    spin_lock(&tfile->f_lock);    //将epitem链入监听事件所对应的strcut file中的f_ep_links成员上    list_add_tail(&epi->fllink, &tfile->f_ep_links);    spin_unlock(&tfile->f_lock);    /*     * Add the current item to the RB tree. All RB tree operations are     * protected by "mtx", and ep_insert() is called with "mtx" held.     */    //将epitem插入到epollfd所对应的eventpolld中的rbr红黑树中    ep_rbtree_insert(ep, epi);    /* We have to drop the new item inside our item list to keep track of it */    spin_lock_irqsave(&ep->lock, flags);    /* If the file is already "ready" we drop it inside the ready list */    //此时判断一下是不是新的监听事件已经就绪且就绪链表为空    if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {        //将epitem链入就绪链表中        list_add_tail(&epi->rdllink, &ep->rdllist);        /* Notify waiting tasks that events are available */        //判断eventpoll中的wq等待队列是否为NULL,如果不为空,就唤醒等待队列上对应的进程        if (waitqueue_active(&ep->wq))            wake_up_locked(&ep->wq);        //判断poll_wait等待队列是否为NULL,如果不为NULL,pwake加1        if (waitqueue_active(&ep->poll_wait))            pwake++;    }    spin_unlock_irqrestore(&ep->lock, flags);    atomic_long_inc(&ep->user->epoll_watches);    /* We have to call this outside the lock */    if (pwake)        ep_poll_safewake(&ep->poll_wait);    return 0;error_unregister:    ep_unregister_pollwait(ep, epi);    /*     * We need to do this because an event could have been arrived on some     * allocated wait queue. Note that we don't care about the ep->ovflist     * list, since that is used/cleaned only inside a section bound by "mtx".     * And ep_insert() is called with "mtx" held.     */    spin_lock_irqsave(&ep->lock, flags);    if (ep_is_linked(&epi->rdllink))        list_del_init(&epi->rdllink);    spin_unlock_irqrestore(&ep->lock, flags);    kmem_cache_free(epi_cache, epi);    return error;}
  • epoll_wait
//参数epfd就是epollfd//参数events指向一个数组,用来存放最后返回的就绪事件//参数maxevents表示最多监听多少个事件//参数timeout表示阻塞时间SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,        int, maxevents, int, timeout){    int error;    struct file *file;    struct eventpoll *ep;    /* The maximum number of event must be greater than zero */    //判断maxevents是否合法    if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)        return -EINVAL;    /* Verify that the area passed by the user is writeable */    //判断用户传入的events指向的空间是否合法有效    if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {        error = -EFAULT;        goto error_return;    }    /* Get the "struct file *" for the eventpoll file */    error = -EBADF;    //通过epollfd获得其所对应的struct file数据结构    file = fget(epfd);    if (!file)        goto error_return;    /*     * We have to check that the file structure underneath the fd     * the user passed to us _is_ an eventpoll file.     */    error = -EINVAL;    //判断file文件是否支持epoll对文件的操作    if (!is_file_epoll(file))        goto error_fput;    /*     * At this point it is safe to assume that the "private_data" contains     * our own data structure.     */    //struct file中的private_data成员存储着epollfd对应的eventpoll数据结构    ep = file->private_data;    /* Time to fish for events ... */    //ep_poll的定义在下面    error = ep_poll(ep, events, maxevents, timeout);error_fput:    fput(file);error_return:    return error;}
//参数ep为epollfd所对应的eventpoll数据结构//其余参数与epoll_wait参数含义相同static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,           int maxevents, long timeout){    int res = 0, eavail, timed_out = 0;    unsigned long flags;    long slack = 0;    //存放当前进程的等待队列    wait_queue_t wait;    ktime_t expires, *to = NULL;    //如果阻塞时间大于0,就将timeout转化为计算机内部的时间    if (timeout > 0) {        struct timespec end_time = ep_set_mstimeout(timeout);        slack = select_estimate_accuracy(&end_time);        to = &expires;        *to = timespec_to_ktime(end_time);    }    //如果阻塞时间等于0,即非阻塞模式就直接调转到check_events执行    else if (timeout == 0) {        /*         * Avoid the unnecessary trip to the wait queue loop, if the         * caller specified a non blocking operation.         */        timed_out = 1;        spin_lock_irqsave(&ep->lock, flags);        goto check_events;    }fetch_events:    spin_lock_irqsave(&ep->lock, flags);    //如果eventpoll中的rdllist为空或者ovflist为初始化值EP_UNACTIVE_PTR时,满足条件    if (!ep_events_available(ep)) {        /*         * We don't have any available event to return to the caller.         * We need to sleep here, and we will be wake up by         * ep_poll_callback() when events will become available.         */        //初始化等待队列wait,参数current是一个宏,代表当前进程        //init_waitqueue_entry定义在下面        init_waitqueue_entry(&wait, current);        //将等待队列wait添加到eventpoll中的wq等待队列中        __add_wait_queue_exclusive(&ep->wq, &wait);        for (;;) {            /*             * We don't want to sleep if the ep_poll_callback() sends us             * a wakeup in between. That's why we set the task state             * to TASK_INTERRUPTIBLE before doing the checks.             */            //将当前进程调度后的状态设置为浅睡眠,即可中断睡眠状态            set_current_state(TASK_INTERRUPTIBLE);            //如果此时eventpoll中的rdllist就绪链表不为NULL或ovflist不为EP_UNACTIVE_PTR或timed_out为0,那么就不再调度了,直接break跳出循环            if (ep_events_available(ep) || timed_out)                break;            //如果此时收到了信号,那么也不再调度了,直接break跳出循环            if (signal_pending(current)) {                res = -EINTR;                break;            }            spin_unlock_irqrestore(&ep->lock, flags);            //当前进程被调度,进入前睡眠状态            //在此期间,若发生事件就绪或收到信号,就执行poll回调机制            if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))                timed_out = 1;            spin_lock_irqsave(&ep->lock, flags);        }        //此时已从for循环中跳出        //从eventpoll中的wq等待队列里删除wait等待队列        __remove_wait_queue(&ep->wq, &wait);        //设置当前进程下一次调度的状态为运行中状态        set_current_state(TASK_RUNNING);    }check_events:    /* Is it worth to try to dig for events ? */    //判断此时eventpoll中的rdllist是否为空或者ovflist为初始化值是否为EP_UNACTIVE_PTR    eavail = ep_events_available(ep);    spin_unlock_irqrestore(&ep->lock, flags);    /*     * Try to transfer events to user space. In case we get 0 events and     * there's still timeout left over, we go trying again in search of     * more luck.     */    //此时尝试将就绪事件传输到用户空间    //如果我们得到0个就绪事件,还有超时时间,就跳转至fetch_events    //ep_send_events定义在下面    if (!res && eavail &&        !(res = ep_send_events(ep, events, maxevents)) && !timed_out)        goto fetch_events;    return res;}
static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p){    q->flags = 0; //将等待队列状态初始化为0    q->private = p; //将等待队列的成员private指针初始化为p,即当前进程    q->func = default_wake_function; //将等待队列的成员func初始化为default_wake_function,即唤醒进程时的函数}
//参数含义与ep_poll函数参数相同,不再赘述static int ep_send_events(struct eventpoll *ep,              struct epoll_event __user *events, int maxevents){    //初始化ep_send_events_data数据结构,这个数据结构就只包含maxevents和events    struct ep_send_events_data esed;    esed.maxevents = maxevents;    esed.events = events;    //ep_scan_ready_list定义在下面    return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);}
//参数ep为epollfd所对应的eventpoll//参数sproc为函数指针,调用时赋值为ep_send_events_proc//参数priv指向ep_send_events_data数据结构//参数depth初始化为0static int ep_scan_ready_list(struct eventpoll *ep,                  int (*sproc)(struct eventpoll *,                       struct list_head *, void *),                  void *priv,                  int depth){    int error, pwake = 0;    unsigned long flags;    struct epitem *epi, *nepi;    LIST_HEAD(txlist);    /*     * We need to lock this because we could be hit by     * eventpoll_release_file() and epoll_ctl().     */    mutex_lock_nested(&ep->mtx, depth);    /*     * Steal the ready list, and re-init the original one to the     * empty list. Also, set ep->ovflist to NULL so that events     * happening while looping w/out locks, are not lost. We cannot     * have the poll callback to queue directly on ep->rdllist,     * because we want the "sproc" callback to be able to do it     * in a lockless way.     */    spin_lock_irqsave(&ep->lock, flags);    //此时所有发生就绪事件的epitem都已经链入了eventpoll中的rdllist就绪链表了    //此时将rdllist就绪链表上的所有元素都转移到txlist中,而rdllist被清空    list_splice_init(&ep->rdllist, &txlist);    //将ovlist置NULL,是因为此时不希望再有新的就绪事件对应的epitem加入到rdllist中    ep->ovflist = NULL;    spin_unlock_irqrestore(&ep->lock, flags);    /*     * Now call the callback function.     */    //此时调用参数传入的回调函数,即ep_send_events_proc    //ep_send_events_proc定义在下面    error = (*sproc)(ep, &txlist, priv);    spin_lock_irqsave(&ep->lock, flags);    /*     * During the time we spent inside the "sproc" callback, some     * other events might have been queued by the poll callback.     * We re-insert them inside the main ready-list here.     */    //当调用ep_send_events_proc函数时,即向用户空间传递数据时    //发生了就绪事件,这些就绪事件对应的epitem都链入了eventpoll中的ovflist    //现在遍历ovflist链表,依次处理这些epitem    for (nepi = ep->ovflist; (epi = nepi) != NULL;         nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {        /*         * We need to check if the item is already in the list.         * During the "sproc" callback execution time, items are         * queued into ->ovflist but the "txlist" might already         * contain them, and the list_splice() below takes care of them.         */        //如果epitem存在,就将epitem尾插进rddlist中        if (!ep_is_linked(&epi->rdllink))            list_add_tail(&epi->rdllink, &ep->rdllist);    }    /*     * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after     * releasing the lock, events will be queued in the normal way inside     * ep->rdllist.     */    //将ovflist置为EP_UNACTIVE_PTR,即((void *) -1L)    ep->ovflist = EP_UNACTIVE_PTR;    /*     * Quickly re-inject items left on "txlist".     */    //经过ep_send_events_proc对epitem的处理后,有的epitem还未被处理完,将这些epitem重新链入rdllist中    list_splice(&txlist, &ep->rdllist);    //如果rdllist就绪链表不为NULL时    if (!list_empty(&ep->rdllist)) {        /*         * Wake up (if active) both the eventpoll wait list and         * the ->poll() wait list (delayed after we release the lock).         */        //当wq等待队列wq不为NULL时        if (waitqueue_active(&ep->wq))            //唤醒等待队列wq上的成员,及当前进程            wake_up_locked(&ep->wq);        if (waitqueue_active(&ep->poll_wait))            pwake++;    }    spin_unlock_irqrestore(&ep->lock, flags);    mutex_unlock(&ep->mtx);    /* We have to call this outside the lock */    if (pwake)        ep_poll_safewake(&ep->poll_wait);    return error;}
//参数ep为epollfd所对应的eventpoll//参数head为txlist//参数priv为ep_send_events_data数据结构static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,                   void *priv){    struct ep_send_events_data *esed = priv;    int eventcnt;    unsigned int revents;    struct epitem *epi;    struct epoll_event __user *uevent;    /*     * We can loop without lock because we are passed a task private list.     * Items cannot vanish during the loop because ep_scan_ready_list() is     * holding "mtx" during this call.     */    //遍历整个txlist链表    for (eventcnt = 0, uevent = esed->events;         !list_empty(head) && eventcnt < esed->maxevents;) {        //获取txlist链表中的第一个节点        epi = list_first_entry(head, struct epitem, rdllink);        //从txlink链表中将epitem删除        list_del_init(&epi->rdllink);        //获取此时,最新的epitem的就绪事件类型        revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &            epi->event.events;        /*         * If the event mask intersect the caller-requested one,         * deliver the event to userspace. Again, ep_scan_ready_list()         * is holding "mtx", so no operations coming from userspace         * can change the item.         */        //再一次判断是否有就绪事件发生        if (revents) {            //将当前的就绪事件拷贝到用户空间中            //如果此时epitem还没有处理完,就将epitem再链入txlist链表中            if (__put_user(revents, &uevent->events) ||                __put_user(epi->event.data, &uevent->data)) {                list_add(&epi->rdllink, head);                return eventcnt ? eventcnt : -EFAULT;            }            eventcnt++;            uevent++;            if (epi->event.events & EPOLLONESHOT)                epi->event.events &= EP_PRIVATE_BITS;            //判断fd是否为ET模式,如果不是ET模式,就要将自己再一次链入rdllist就绪链表中,这是LT和ET模式本质区别            //以便下次调用epoll_wait()会再次检查事件的可用性            else if (!(epi->event.events & EPOLLET)) {                /*                 * If this file has been added with Level                 * Trigger mode, we need to insert back inside                 * the ready list, so that the next call to                 * epoll_wait() will check again the events                 * availability. At this point, no one can insert                 * into ep->rdllist besides us. The epoll_ctl()                 * callers are locked out by                 * ep_scan_ready_list() holding "mtx" and the                 * poll callback will queue them in ep->ovflist.                 */                list_add_tail(&epi->rdllink, &ep->rdllist);            }        }    }    return eventcnt;}