通过AMS.attachApplicationLocked()引入Binder.linkToDeath机制

来源:互联网 发布:怎么创建淘宝店铺 编辑:程序博客网 时间:2024/05/23 18:33

当系统创建进程以后会调用AMS.attachApplicationLocked(),在这个方法内部会注册该进程的死亡回调

//其中thread是ActivityThread通过夸进程通信获取Binder的代理对象,然后调用linkToDeath()AppDeathRecipient adr = new AppDeathRecipient(app, pid, thread);thread.asBinder().linkToDeath(adr, 0);

我们会发现这个一个空实现

ApplicationThread.java

/** * Local implementation is a no-op. */public void linkToDeath(DeathRecipient recipient, int flags) {}

空实现我们肯定会很好奇,什么也没做呀,但是我们想想,thread.asBinder()代表的是ActivityThread但是实际上是ActivityThread对象本身吗?答案:不是的。带着这个疑问,我们继续倒退代码,这个thread到底谁。

我们会在ActivityThread.main中去开始我们创建子进程后的操作所以流程如下:

ActivityThread.main

ActivityThread thread = new ActivityThread();//这里thread是ActivityThreadthread.attach(false);

attach()

 final ApplicationThread mAppThread = new ApplicationThread();//AT的成员变量-------final IActivityManager mgr = ActivityManagerNative.getDefault();//这个时候我们需要夸进程通信到AMS的attachApplicationLocked方法,又回到了最初的原点。try {    mgr.attachApplication(mAppThread);} catch (RemoteException ex) {    // Ignore}

所以到这里我们清楚了,那个thread.asBinder()代表的是ApplicationThread,注意这里我说的是代表的是看下面。

ActivityManagerNative.java

public void attachApplication(IApplicationThread app) throws RemoteException{    Parcel data = Parcel.obtain();    Parcel reply = Parcel.obtain();    data.writeInterfaceToken(IActivityManager.descriptor);    data.writeStrongBinder(app.asBinder());//看这里看这里    mRemote.transact(ATTACH_APPLICATION_TRANSACTION, data, reply, 0);    reply.readException();    data.recycle();    reply.recycle();}

传的是Binder的代理,也就是ApplicationThread的代理,那我们现在肯定还不死心,非得要看看ApplicationThread的asBinder()是什么鬼。

ApplicationThread.java

private class ApplicationThread extends ApplicationThreadNative {...}

ApplicationThreadNative.java

public abstract class ApplicationThreadNative extends Binder        implements IApplicationThread {    public IBinder asBinder()    {        return this;//代表的是ApplicationThread,因为是继承关系    }}        

到这里我们清楚了thread.asBinder()ApplicationThreadNative,通过attachApplication传递进去的是ApplicationThread。ApplicationThread对象的asBinder是ApplicationThread本身,ApplicationThread继承了ApplicationThreadNative,也就是传递的是引用本身。通过binder传递对端得到的就是ApplicationThread实体对象的代理对象,所以我们需要关注的是ApplicationThread这个对象代理对象ApplicationThreadProxy既然是代理对象,那就使用的是BinderProxy,所以我们就知道了linkToDeath是在BinderProxy中。


继续来到BinderProxy.java中

BinderProxy.java

//是native的public native void linkToDeath(DeathRecipient recipient, int flags)        throws RemoteException;

这个问题也证明了BinderProxy代理端持有者,也就是那些client端才需要处理死亡回调。而Binder服务端不需要,所以为空。

我们看看native怎么写的

static const JNINativeMethod gBinderProxyMethods[] = {     {"linkToDeath", "(Landroid/os/IBinder$DeathRecipient;I)V", (void*)android_os_BinderProxy_linkToDeath} };

android_util_Binder.cpp
//我们传递进来的参数:创建的是通过子进程pid,name封装的AppDeathRecipient对象,0

static void android_os_BinderProxy_linkToDeath(JNIEnv* env, jobject obj,        jobject recipient, jint flags) // throws RemoteException{    //这里顺便可以学习一下jni抛出异常的形式    if (recipient == NULL) {        jniThrowNullPointerException(env, NULL);        return;    }    //获取BpBinder引用    IBinder* target = (IBinder*)        env->GetLongField(obj, gBinderProxyOffsets.mObject);//[1.0]    if (target == NULL) {        ALOGW("Binder has been finalized when calling linkToDeath() with recip=%p)\n", recipient);        assert(false);    }    //也要注意这里打印的日志    LOGDEATH("linkToDeath: binder=%p recipient=%p\n", target, recipient);    if (!target->localBinder()) {//[1.0]BpBinder必须不为空        DeathRecipientList* list = (DeathRecipientList*)                env->GetLongField(obj, gBinderProxyOffsets.mOrgue);        //创建JavaDeathRecipient对象        sp<JavaDeathRecipient> jdr = new JavaDeathRecipient(env, recipient, list);        //这里才是真正建立死亡回调的地方[3.0]        status_t err = target->linkToDeath(jdr, NULL, flags);        if (err != NO_ERROR) {            // Failure adding the death recipient, so clear its reference            // now.            jdr->clearReference();//[2.0]            signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/);        }    }}

1.0

IBinder* target = (IBinder*)env->GetLongField(obj, gBinderProxyOffsets.mObject);-------------------使用jni里面的函数jlong       (*GetLongField)(JNIEnv*, jobject, jfieldID);这个函数目的是从obj中胡群殴对应mObject那个字段的值--------------------obj是传递过来的参数也就是我们通过子进程封装的AppDeathRecipient对象//注意这里jid的设置jobject javaObjectForIBinder(JNIEnv* env, const sp<IBinder>& val){    // The proxy holds a reference to the native object.    env->SetLongField(object, gBinderProxyOffsets.mObject, (jlong)val.get());}

1.0.1

例如这种:jfieldID fid = (*env)->GetFieldID(env, cls, "key", "Ljava/lang/String;");//得到字段jfieldIDjstring jstr = (*env)->GetObjectField(env, jobj, fid);//获取jfieldID对应字段的属性值Get<type>FieldNativeType Get<type>Field(JNIEnv *env, jobject obj, jfieldID fieldID);函数作用:  该访问器例程系列返回对象的实例(非静态)域的值。要访问的域由通过调用GetFieldID() 而得到的域 ID 指定。参数说明:  env:JNI 接口指针。  obj:Java 对象(不能为 NULL)。  fieldID:有效的域 ID。<type>可以是BooleanChar等类型,所有的Get<type>Field参考下面的函数jboolean (*GetBooleanField)(JNIEnv*, jobject, jfieldID);jbyte (*GetByteField)(JNIEnv*, jobject, jfieldID);jchar (*GetCharField)(JNIEnv*, jobject, jfieldID);jshort (*GetShortField)(JNIEnv*, jobject, jfieldID);jint (*GetIntField)(JNIEnv*, jobject, jfieldID);jlong (*GetLongField)(JNIEnv*, jobject, jfieldID);jfloat (*GetFloatField)(JNIEnv*, jobject, jfieldID);jdouble (*GetDoubleField)(JNIEnv*, jobject, jfieldID);

1.1

191BBinder* BBinder::localBinder()192{193    return this;194}

到这里我们小节一下我们的android_os_BinderProxy_linkToDeath方法:

我们首先会得到BpBinder。然后获取到DeathRecipientList,主要记录BpBinder的JavaDeathRecipient信息列表,因为一个BpBnder可以注册多个死亡回调。
创建JavaDeathRecipient继承了IBinder::DeathRecipient

class JavaDeathRecipient : public IBinder::DeathRecipient{public:    JavaDeathRecipient(JNIEnv* env, jobject object, const sp<DeathRecipientList>& list)        : mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object)),          mObjectWeak(NULL), mList(list)    {        //将当前对象sp添加到列表DeathRecipientList        LOGDEATH("Adding JDR %p to DRL %p", this, list.get());        list->add(this);        android_atomic_inc(&gNumDeathRefs);        incRefsCreated(env);    }}
  • 通过env->NewGlobalRef(object),为recipient创建相应的全局引用,并保存到mObject成员变量;
  • 将当前对象JavaDeathRecipient的强指针sp添加到DeathRecipientList;

android_util_Binder.cpp

static void incRefsCreated(JNIEnv* env){    int old = android_atomic_inc(&gNumRefsCreated);    if (old == 2000) {        android_atomic_and(0, &gNumRefsCreated);        //触发forceGc        env->CallStaticVoidMethod(gBinderInternalOffsets.mClass,                gBinderInternalOffsets.mForceGc);    }}

这个方法主要计数,每计数到2000则会执行一次forceGc

调用的场景如下:

JavaBBinder构造中    JavaBBinder(JNIEnv* env, jobject object)        : mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object))    {        ALOGV("Creating JavaBBinder %p\n", this);        android_atomic_inc(&gNumLocalRefs);        incRefsCreated(env);    }
创建JavaDeathRecipient对象时JavaDeathRecipient(JNIEnv* env, jobject object, const sp<DeathRecipientList>& list)    : mVM(jnienv_to_javavm(env)), mObject(env->NewGlobalRef(object)),      mObjectWeak(NULL), mList(list){    // These objects manage their own lifetimes so are responsible for final bookkeeping.    // The list holds a strong reference to this object.    LOGDEATH("Adding JDR %p to DRL %p", this, list.get());    list->add(this);    android_atomic_inc(&gNumDeathRefs);    incRefsCreated(env);}
将native层BpBinder对象转换为Java层BinderProxy对象的过程;jobject javaObjectForIBinder(JNIEnv* env, const sp<IBinder>& val){ incRefsCreated(env);}

2.0 clearReference

//清除引用,将JavaDeathRecipient从DeathRecipientList列表中移除.void clearReference() {     sp<DeathRecipientList> list = mList.promote();     if (list != NULL) {         list->remove(this); //从列表中移除引用     } }

3.0

status_t BpBinder::linkToDeath(    const sp<DeathRecipient>& recipient, void* cookie, uint32_t flags){    Obituary ob;    ob.recipient = recipient; //该对象为JavaDeathRecipient    ob.cookie = cookie; // cookie=NULL    ob.flags = flags; // flags=0    {        AutoMutex _l(mLock);        if (!mObitsSent) { //没有执行过sendObituary,则进入该方法            if (!mObituaries) {                mObituaries = new Vector<Obituary>;                if (!mObituaries) {                    return NO_MEMORY;                }                getWeakRefs()->incWeak(this);                IPCThreadState* self = IPCThreadState::self();                //[3.1]                self->requestDeathNotification(mHandle, this);                //[3.2]                self->flushCommands();            }            //将新创建的Obituary添加到mObituaries            ssize_t res = mObituaries->add(ob);            return res >= (ssize_t)NO_ERROR ? (status_t)NO_ERROR : res;        }    }    return DEAD_OBJECT;}

3.1requestDeathNotification

直接写命令BC_REQUEST_DEATH_NOTIFICATION

status_t IPCThreadState::requestDeathNotification(int32_t handle, BpBinder* proxy){    mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION);    mOut.writeInt32((int32_t)handle);    mOut.writePointer((uintptr_t)proxy);    return NO_ERROR;}

3.2 flushCommands
给驱动发消息,false是不会阻塞等待。

void IPCThreadState::flushCommands(){    if (mProcess->mDriverFD <= 0)        return;    talkWithDriver(false);}

binder.c

static int binder_thread_write(struct binder_proc *proc,      struct binder_thread *thread,      binder_uintptr_t binder_buffer, size_t size,      binder_size_t *consumed){  uint32_t cmd;  //proc, thread都是指当前发起端进程的信息  struct binder_context *context = proc->context;  void __user *buffer = (void __user *)(uintptr_t)binder_buffer;  void __user *ptr = buffer + *consumed;   void __user *end = buffer + size;  while (ptr < end && thread->return_error == BR_OK) {    get_user(cmd, (uint32_t __user *)ptr); //获取BC_REQUEST_DEATH_NOTIFICATION    ptr += sizeof(uint32_t);    switch (cmd) {        case BC_REQUEST_DEATH_NOTIFICATION:{ //注册死亡通知            uint32_t target;            void __user *cookie;            struct binder_ref *ref;            struct binder_ref_death *death;            get_user(target, (uint32_t __user *)ptr); //获取target            ptr += sizeof(uint32_t);            get_user(cookie, (void __user * __user *)ptr); //获取BpBinder            ptr += sizeof(void *);            ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref            if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {                //native Bp可注册多个,但Kernel只允许注册一个死亡通知                if (ref->death) {                    break;                 }                death = kzalloc(sizeof(*death), GFP_KERNEL);                INIT_LIST_HEAD(&death->work.entry);                death->cookie = cookie;                ref->death = death;                //当目标binder服务所在进程已死,则直接发送死亡通知。这是非常规情况                if (ref->node->proc == NULL) {                     ref->death->work.type = BINDER_WORK_DEAD_BINDER;                    //当前线程为binder线程,则直接添加到当前线程的todo队列.                     if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) {                        list_add_tail(&ref->death->work.entry, &thread->todo);                    } else {                        list_add_tail(&ref->death->work.entry, &proc->todo);                        wake_up_interruptible(&proc->wait);                    }                }            } else {                ...            }        } break;      case ...;    }    *consumed = ptr - buffer;  }    }

可见现在已经在Binder的todo链表中添加了BpBinder的信息。所以现在意味着,只要对端进程挂掉,Binder是在底层可以从todo链表中拿出来client的然后调用对应的回调方法。

通过上面的分析,我们已经知道,可以有多个BpBinder绑定到当前服务端的死亡列表中,然后通过真正的BpBinder中的linkToDeath添加到Binder内核中的todo链表中。todo链表记录着所有的binder,在这里通过work.type区分这个Binder是已经linkToDeath的。

 DeathRecipientList* list = (DeathRecipientList*)env->GetLongField(obj, gBinderProxyOffsets.mOrgue);//创建JavaDeathRecipient对象sp<JavaDeathRecipient> jdr = new JavaDeathRecipient(env, recipient, list);//这里才是真正建立死亡回调的地方[3.0]status_t err = target->linkToDeath(jdr, NULL, flags);

那么什么时候才会触发呢?

我们按着这个思路往下想,既然内核todo链表中有linkToDeath的Binder引用,那么我们什么时候才能触发遍历带有特殊type的linkToDeath的Binder呢?这个就和我们的目的有关,答案是Binder服务端死亡的时候会触发。既然这样我们就需要知道Binder死亡后的一些事情。我们下面就分析Binder死亡后的过程。

小发现

> start

当我们调试Binder的时候,log中会有一些调试信息,比如

当打开调试开关BINDER_DEBUG_OPEN_CLOSE时,主要输出binder的open, mmap, close, flush, release方法中的log信息

具体kernel log,如下:

  • binder_open: 4681:4681
  • binder_mmap: 4681 b6b42000-b6c40000 (1016 K) vma 200071 pagep 79f
  • binder: 4681 close vm area b6b42000-b6c40000 (1016 K) vma 2220051 pagep 79f
  • binder_flush: 4681 woke 0 threads
  • binder_release: 4681 threads 1, nodes 0 (ref 0), refs 2, active transactions 0, buffers 1, pages 1

对应的log信息是:

  • binder_open: group_leader->pid:pid
  • binder_mmap: pid vm_start-vm_end (vm_size K) vma vm_flags pagep vm_page_prot
  • binder: pid close vm area vm_start-vm_end (vm_size K) vma vm_flags pagep vm_page_prot
  • binder_flush: pid woke wake_count threads
  • binder_release: pid threads threads, nodes nodes (ref incoming_refs), refs outgoing_refs, active transactions active_transactions, buffers buffers, pages page_count

具体的含义:

  • vm_page_prot:是指当前进程的VMA访问权限;
  • wake_count:是指该进程唤醒了处于BINDER_LOOPER_STATE_WAITING休眠等待状态的线程个数;
  • threads是指该进程中的线程个数;
  • nodes代表该进程中创建binder_node个数;
  • incoming_refs指向当前node的refs个数;
  • outgoing_refs指向其他进程的refs个数;
  • active_transactions是指当前进程中所有binder线程的transactions总和;
  • buffers是指当前进程已分配的buffer个数;
    page_count是指当前进程已分配的物理page个数。

对应的函数:

  • binder_open()
  • binder_vma_open() 或者 binder_mmap()
  • binder_vma_close()
  • binder_deferred_flush() 由binder_flush调用(见下方调用栈)
  • binder_deferred_release() 由binder_release调用(见下方调用栈)

end


我们在这里着重看binder_release的调用栈

binder_release    binder_defer_work(proc, BINDER_DEFERRED_RELEASE);    queue_work(binder_deferred_workqueue, &binder_deferred_work);      binder_deferred_func    //通过 DECLARE_WORK(binder_deferred_work, binder_deferred_func);        binder_deferred_release

顾名思义,当binder所在进程结束时候会调用binder_release,binder_open打开binder驱动/dev/binder,这是字符设备,获取文件苗舒服,在进程结束的时候会有关闭文件系统的过程,会调用close(0,对应的方法就是release()。

我们在来思考一下,Linux系统是一个文件系统,android中操作很多文件节点,有输入的event事件,binder节点文件等等,既然是文件,那就有文件的操作,既然有文件的操作,那就必须涉及到文件的打开和关闭,我们也从binder中验证了这一点。binder_open(),那么肯定对应有关闭这个文件节点,所以我们从close入手就利索应当了。

binder.c

void binder_release(struct binder_state *bs, uint32_t target){    uint32_t cmd[2];    cmd[0] = BC_RELEASE;    cmd[1] = target;    binder_write(bs, cmd, sizeof(cmd));}
int binder_write(struct binder_state *bs, void *data, size_t len){    struct binder_write_read bwr;    int res;    bwr.write_size = len;    bwr.write_consumed = 0;    bwr.write_buffer = (uintptr_t) data;    bwr.read_size = 0;    bwr.read_consumed = 0;    bwr.read_buffer = 0;    res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);    if (res < 0) {        fprintf(stderr,"binder_write: ioctl failed (%s)\n",                strerror(errno));    }    return res;}

我们知道所有binder的请求都是通过binder_thread_write

binder_thread_write(){    while (ptr < end && thread->return_error == BR_OK) {        get_user(cmd, (uint32_t __user *)ptr);//获取IPC数据中的Binder协议(BC码)        switch (cmd) {            case BC_INCREFS: ...            case BC_ACQUIRE: ...            case BC_RELEASE: ...            case BC_DECREFS: ...            case BC_INCREFS_DONE: ...            case BC_ACQUIRE_DONE: ...            case BC_FREE_BUFFER: ...            case BC_TRANSACTION:            case BC_REPLY: {                struct binder_transaction_data tr;                copy_from_user(&tr, ptr, sizeof(tr)); //拷贝用户空间tr到内核                // 【见小节2.2.1】                binder_transaction(proc, thread, &tr, cmd == BC_REPLY);                break;            case BC_REGISTER_LOOPER: ...            case BC_ENTER_LOOPER: ...            case BC_EXIT_LOOPER: ...            case BC_REQUEST_DEATH_NOTIFICATION: ...            case BC_CLEAR_DEATH_NOTIFICATION:  ...            case BC_DEAD_BINDER_DONE: ...            }        }    }}

我们清晰的看见,对应有BC_RELEASE
这个函数我们就不用多说了,之前binder有过分析,看我的其他博客。
通过给驱动写如BINDER_WRITE_READ来告诉驱动,我要写一个数据,数据具体带有BC_RELEASE这个命令
最后BC_RELEASE功能是实现文件描述引用-1.当引用清0的时候这个Binder就是调用close的时候,

binder.c

static const struct file_operations binder_fops = {  .owner = THIS_MODULE,  .poll = binder_poll,  .unlocked_ioctl = binder_ioctl,  .compat_ioctl = binder_ioctl,  .mmap = binder_mmap,  .open = binder_open,  .flush = binder_flush,  .release = binder_release, //对应于release的方法};
static int binder_release(struct inode *nodp, struct file *filp){  struct binder_proc *proc = filp->private_data;  debugfs_remove(proc->debugfs_entry);  binder_defer_work(proc, BINDER_DEFERRED_RELEASE);//下面  return 0;}
static void binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer){  mutex_lock(&binder_deferred_lock); //获取锁  //添加BINDER_DEFERRED_RELEASE  proc->deferred_work |= defer;   if (hlist_unhashed(&proc->deferred_work_node)) {    hlist_add_head(&proc->deferred_work_node, &binder_deferred_list);    //向工作队列添加binder_deferred_work [见小节4.4]    queue_work(binder_deferred_workqueue, &binder_deferred_work);  }  mutex_unlock(&binder_deferred_lock); //释放锁}
//全局工作队列static struct workqueue_struct *binder_deferred_workqueue;static int __init binder_init(void){  int ret;  //创建了名叫“binder”的工作队列  binder_deferred_workqueue = create_singlethread_workqueue("binder");  if (!binder_deferred_workqueue)    return -ENOMEM;  ...}device_initcall(binder_init);
static DECLARE_WORK(binder_deferred_work, binder_deferred_func);#define DECLARE_WORK(n, f)            \  struct work_struct n = __WORK_INITIALIZER(n, f)#define __WORK_INITIALIZER(n, f) {          \  .data = WORK_DATA_STATIC_INIT(),        \  .entry  = { &(n).entry, &(n).entry },        \  .func = (f),              \  __WORK_INIT_LOCKDEP_MAP(#n, &(n))        \  }

在Binder设备驱动初始化的过程执行binder_init()方法中,调用 create_singlethread_workqueue(“binder”),创建了名叫“binder”的工作队列(workqueue)。 workqueue是kernel提供的一种实现简单而有效的内核线程机制,可延迟执行任务。

binder_deferred_func

static void binder_deferred_func(struct work_struct *work){    binder_deferred_release(proc);}
static void binder_deferred_release(struct binder_proc *proc){  struct binder_transaction *t;  struct rb_node *n;  int threads, nodes, incoming_refs, outgoing_refs, buffers,    active_transactions, page_count;  hlist_del(&proc->proc_node); //删除proc_node节点  if (binder_context_mgr_node && binder_context_mgr_node->proc == proc) {    binder_context_mgr_node = NULL;  }  //释放binder_thread  threads = 0;  active_transactions = 0;  while ((n = rb_first(&proc->threads))) {    struct binder_thread *thread;    thread = rb_entry(n, struct binder_thread, rb_node);    threads++;    active_transactions += binder_free_thread(proc, thread);  }  //释放binder_node   nodes = 0;  incoming_refs = 0;  while ((n = rb_first(&proc->nodes))) {    struct binder_node *node;    node = rb_entry(n, struct binder_node, rb_node);    nodes++;    rb_erase(&node->rb_node, &proc->nodes);    incoming_refs = binder_node_release(node, incoming_refs);  }  //释放binder_ref   outgoing_refs = 0;  while ((n = rb_first(&proc->refs_by_desc))) {    struct binder_ref *ref;    ref = rb_entry(n, struct binder_ref, rb_node_desc);    outgoing_refs++;    binder_delete_ref(ref);  }  //释放binder_work   binder_release_work(&proc->todo);  binder_release_work(&proc->delivered_death);  buffers = 0;  while ((n = rb_first(&proc->allocated_buffers))) {    struct binder_buffer *buffer;    buffer = rb_entry(n, struct binder_buffer, rb_node);    t = buffer->transaction;    if (t) {      t->buffer = NULL;      buffer->transaction = NULL;    }    //释放binder_buf     binder_free_buf(proc, buffer);    buffers++;  }  binder_stats_deleted(BINDER_STAT_PROC);  page_count = 0;  if (proc->pages) {    int i;    for (i = 0; i < proc->buffer_size / PAGE_SIZE; i++) {      void *page_addr;      if (!proc->pages[i])        continue;      page_addr = proc->buffer + i * PAGE_SIZE;      unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);      __free_page(proc->pages[i]);      page_count++;    }    kfree(proc->pages);    vfree(proc->buffer);  }  put_task_struct(proc->tsk);  kfree(proc);}

此处proc是来自Bn端的binder_proc.

binder_deferred_release的主要工作有:

  • binder_free_thread(proc, thread)
  • binder_node_release(node, incoming_refs);
  • binder_delete_ref(ref);
  • binder_release_work(&proc->todo);
  • binder_release_work(&proc->delivered_death);
  • binder_free_buf(proc, buffer);
    以及释放各种内存信息

我们现在关心binder_node也就是binder实体释放

static int binder_node_release(struct binder_node *node, int refs){  struct binder_ref *ref;  int death = 0;  list_del_init(&node->work.entry);  binder_release_work(&node->async_todo);//重点  if (hlist_empty(&node->refs)) {    kfree(node); //引用为空,则直接删除节点    binder_stats_deleted(BINDER_STAT_NODE);    return refs;  }  node->proc = NULL;  node->local_strong_refs = 0;  node->local_weak_refs = 0;  hlist_add_head(&node->dead_node, &binder_dead_nodes);  hlist_for_each_entry(ref, &node->refs, node_entry) {    refs++;    if (!ref->death)      continue;    death++;    if (list_empty(&ref->death->work.entry)) {      //添加BINDER_WORK_DEAD_BINDER事务到todo队列重点      ref->death->work.type = BINDER_WORK_DEAD_BINDER;      list_add_tail(&ref->death->work.entry, &ref->proc->todo);      wake_up_interruptible(&ref->proc->wait);    }   }  return refs;}

该方法会遍历该binder_node所有的binder_ref, 当存在binder死亡通知,则向相应的binder_ref 所在进程的todo队列添加BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程。

static void binder_release_work(struct list_head *list){  struct binder_work *w;  while (!list_empty(list)) {    w = list_first_entry(list, struct binder_work, entry);    list_del_init(&w->entry); //删除binder_work    switch (w->type) {    case BINDER_WORK_TRANSACTION: {      struct binder_transaction *t;      t = container_of(w, struct binder_transaction, work);      if (t->buffer->target_node &&          !(t->flags & TF_ONE_WAY)) {        //发送failed回复        binder_send_failed_reply(t, BR_DEAD_REPLY);      } else {        t->buffer->transaction = NULL;        kfree(t);        binder_stats_deleted(BINDER_STAT_TRANSACTION);      }    } break;    case BINDER_WORK_TRANSACTION_COMPLETE: {      kfree(w);      binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);    } break;    case BINDER_WORK_DEAD_BINDER_AND_CLEAR:    case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {      struct binder_ref_death *death;      death = container_of(w, struct binder_ref_death, work);      kfree(death);      binder_stats_deleted(BINDER_STAT_DEATH);    } break;    default:      break;    }  }}

到这里我们已经清楚了,binder_node_release这个过程中,BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程。

我们回过头来看

static int binder_thread_read(struct binder_proc *proc,                  struct binder_thread *thread,                  binder_uintptr_t binder_buffer, size_t size,                  binder_size_t *consumed, int non_block)    ...    //唤醒等待中的binder线程    wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));    binder_lock(__func__); //加锁    if (wait_for_proc_work)        proc->ready_threads--; //空闲的binder线程减1    thread->looper &= ~BINDER_LOOPER_STATE_WAITING;    while (1) {        uint32_t cmd;        struct binder_transaction_data tr;        struct binder_work *w;        struct binder_transaction *t = NULL;        //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER        if (!list_empty(&thread->todo)) {            w = list_first_entry(&thread->todo, struct binder_work,                         entry);        } else if (!list_empty(&proc->todo) && wait_for_proc_work) {            w = list_first_entry(&proc->todo, struct binder_work,                         entry);        }        switch (w->type) {          case BINDER_WORK_DEAD_BINDER:            case BINDER_WORK_DEAD_BINDER_AND_CLEAR:            case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {                struct binder_ref_death *death;                uint32_t cmd;                death = container_of(w, struct binder_ref_death, work);                if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)                    cmd = BR_CLEAR_DEATH_NOTIFICATION_DONE; //清除完成                ...                if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {                    list_del(&w->entry); //清除死亡通知的work队列                    kfree(death);                    binder_stats_deleted(BINDER_STAT_DEATH);                }                 ...                if (cmd == BR_DEAD_BINDER)                    goto done;            } break;        }    }    ...    return 0;}

queue_work(binder_deferred_workqueue,&binder_deferred_work);

给工作队列中添加binder_deferred_workqueue,其中binder_deferred_workqueue=create_singlethread_workqueue(“binder”);

static DECLARE_WORK(binder_deferred_work,binder_deferred_func);这个是定义就是添加一个函数引用在工作队列中,以后对应binder_deferred_func方法

在这个binder_deferred_func方法中,可见将

 if (defer & BINDER_DEFERRED_RELEASE)      binder_deferred_release(proc);

我们现在来精简一下调用栈:

static int binder_release(struct inode *nodp, struct file *filp){    binder_defer_work(proc, BINDER_DEFERRED_RELEASE);}
static void binder_defer_work(struct binder_proc *proc, enum binder_deferred_state defer){    //添加BINDER_DEFERRED_RELEASE    proc->deferred_work |= defer;     //向工作队列添加binder_deferred_work    queue_work(binder_deferred_workqueue, &binder_deferred_work);}

binder_deferred_workqueue我们现在已经知道了,对应这binder_deferred_func这个方法。

static void binder_deferred_func(struct work_struct *work){    if (defer & BINDER_DEFERRED_RELEASE)      binder_deferred_release(proc); }
static void binder_deferred_release(struct binder_proc *proc){    hlist_del(&proc->proc_node); //删除proc_node节点    //释放binder_thread,binder_node,binder_ref,binder_work,binder_buf    //其中在释放binder_node的时候会调用binder_node_release    incoming_refs = binder_node_release(node, incoming_refs);}
static int binder_node_release(struct binder_node *node, int refs){    binder_release_work(&node->async_todo);    if (list_empty(&ref->death->work.entry)) {        //添加BINDER_WORK_DEAD_BINDER事务到todo队列        ref->death->work.type = BINDER_WORK_DEAD_BINDER;        list_add_tail(&ref->death->work.entry, &ref->proc->todo);        wake_up_interruptible(&ref->proc->wait);    }}

到这里我们就已经明白,binder_node_release这个方法会遍历该binder_node所有的binder_ref, 当存在binder死亡通知,则向相应的binder_ref 所在进程的todo队列添加BINDER_WORK_DEAD_BINDER事务并唤醒处于proc->wait的binder线程

还是那句老话,binder是数据传输中枢还是binder_thread_read这个方法,这个方法内部我们看看是如何处理,binder死亡的。

static int binder_thread_read(struct binder_proc *proc,                  struct binder_thread *thread,                  binder_uintptr_t binder_buffer, size_t size,                  binder_size_t *consumed, int non_block){    while (1) {        //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER        if (!list_empty(&thread->todo)) {            w = list_first_entry(&thread->todo, struct binder_work,                         entry);        } else if (!list_empty(&proc->todo) && wait_for_proc_work) {            w = list_first_entry(&proc->todo, struct binder_work,                         entry);        }        switch (w->type) {            case BINDER_WORK_DEAD_BINDER: {                //将这个binder的描述体写入用户空间                put_user(cmd, (uint32_t __user *)ptr);                //把该work加入到delivered_death队列                list_move(&w->entry, &proc->delivered_death);            }        }    }          }

写入到用户空间,那么用户空间一定在阻塞等待读取操作

IPCThreadState.java

status_t IPCThreadState::getAndExecuteCommand(){    status_t result;    int32_t cmd;    result = talkWithDriver(); //该Binder Driver进行交互    if (result >= NO_ERROR) {        cmd = mIn.readInt32(); //读取命令        result = executeCommand(cmd);//核心    }    return result;}
status_t IPCThreadState::executeCommand(int32_t cmd){    BBinder* obj;    switch ((uint32_t)cmd) {      case BR_DEAD_BINDER:      {          BpBinder *proxy = (BpBinder*)mIn.readPointer();          proxy->sendObituary();          mOut.writeInt32(BC_DEAD_BINDER_DONE);          mOut.writePointer((uintptr_t)proxy);      } break;      ...    }    ...    return result;}

这里死亡只调用一次的原因是实体Binder只有一个,所以死亡回调之发送一次。

Bp.sendObituary

void BpBinder::sendObituary(){        IPCThreadState* self = IPCThreadState::self();        //清空死亡通知[见小节6.2]        self->clearDeathNotification(mHandle, this);        self->flushCommands();        reportOneDeath(obits->itemAt(i));//在清空之前已经保存了引用。所以这里里发送死亡通知    }}

reportOneDeath

void BpBinder::reportOneDeath(const Obituary& obit){    //将弱引用提升到sp    sp<DeathRecipient> recipient = obit.recipient.promote();    if (recipient == NULL) return;    //回调死亡通知的方法    recipient->binderDied(this);}

binderDied

private final class AppDeathRecipient implements IBinder.DeathRecipient {    ...    public void binderDied() {        synchronized(ActivityManagerService.this) {            appDiedLocked(mApp, mPid, mAppThread, true);        }    }}

到这里我们终于亲切的看到appDiedLocked这个方法。我们在下次会分析这个方法

unlinkeToDeath

有了上面的基础,我们就很好分析这个了。

BpBinder

status_t BpBinder::unlinkToDeath(    const wp<DeathRecipient>& recipient, void* cookie, uint32_t flags,    wp<DeathRecipient>* outRecipient){    mObituaries->removeAt(i); //移除死亡通知    //清理死亡通知    self->clearDeathNotification(mHandle, this);    self->flushCommands();}
status_t IPCThreadState::clearDeathNotification(int32_t handle, BpBinder* proxy){    mOut.writeInt32(BC_CLEAR_DEATH_NOTIFICATION);    mOut.writeInt32((int32_t)handle);    mOut.writePointer((uintptr_t)proxy);    return NO_ERROR;}

还是通过内核写入BC_CLEAR_DEATH_NOTIFICATION

还是那句老话,就不用我说了哈。

static int binder_thread_write(struct binder_proc *proc,      struct binder_thread *thread,      binder_uintptr_t binder_buffer, size_t size,      binder_size_t *consumed){    switch (cmd) {        case BC_CLEAR_DEATH_NOTIFICATION: { //清除死亡通知            ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref            //添加BINDER_WORK_CLEAR_DEATH_NOTIFICATION事务            death->work.type = BINDER_WORK_CLEAR_DEATH_NOTIFICATION;            list_add_tail(&death->work.entry, &thread->todo);        }    }}

将对应的type设置成BINDER_WORK_CLEAR_DEATH_NOTIFICATION,然后添加到todo链表中

也就是说将对应的type换成BINDER_WORK_CLEAR_DEATH_NOTIFICATION了。

对于Binder IPC进程都会打开/dev/binder文件,当进程异常退出时,Binder驱动会保证释放将要退出的进程中没有正常关闭的/dev/binder文件,实现机制是binder驱动通过调用/dev/binder文件所对应的release回调函数,执行清理工作,并且检查BBinder是否有注册死亡通知,当发现存在死亡通知时,那么就向其对应的BpBinder端发送死亡通知消息。

原创粉丝点击