LockSupport(park/unpark)源码分析

来源:互联网 发布:js string转int 编辑:程序博客网 时间:2024/05/20 01:36

转载:http://www.cnblogs.com/zhizhizhiyuan/p/4966827.html

concurrent包是基于AQS (AbstractQueuedSynchronizer)框架的,AQS框架借助于两个类:

  • Unsafe(提供CAS操作)
  • LockSupport(提供park/unpark操作)

因此,LockSupport非常重要。

两个重点

(1)操作对象

归根结底,LockSupport.park()和LockSupport.unpark(Thread thread)调用的是Unsafe中的native代码:

//LockSupport中public static void park() {        UNSAFE.park(false, 0L);    }
//LockSupport中public static void unpark(Thread thread) {        if (thread != null)            UNSAFE.unpark(thread);    }

Unsafe类中的对应方法:

    //park    public native void park(boolean isAbsolute, long time);    //unpack    public native void unpark(Object var1);

park函数是将当前调用Thread阻塞,而unpark函数则是将指定线程Thread唤醒。

与Object类的wait/notify机制相比,park/unpark有两个优点:

  • 以thread为操作对象更符合阻塞线程的直观定义
  • 操作更精准,可以准确地唤醒某一个线程(notify随机唤醒一个线程,notifyAll唤醒所有等待的线程),增加了灵活性。

(2)关于“许可”

在上面的文字中,我使用了阻塞和唤醒,是为了和wait/notify做对比。

  • 其实park/unpark的设计原理核心是“许可”:park是等待一个许可,unpark是为某线程提供一个许可。
    如果某线程A调用park,那么除非另外一个线程调用unpark(A)给A一个许可,否则线程A将阻塞在park操作上。

  • 有一点比较难理解的,是unpark操作可以再park操作之前。
    也就是说,先提供许可。当某线程调用park时,已经有许可了,它就消费这个许可,然后可以继续运行。这其实是必须的。考虑最简单的生产者(Producer)消费者(Consumer)模型:Consumer需要消费一个资源,于是调用park操作等待;Producer则生产资源,然后调用unpark给予Consumer使用的许可。非常有可能的一种情况是,Producer先生产,这时候Consumer可能还没有构造好(比如线程还没启动,或者还没切换到该线程)。那么等Consumer准备好要消费时,显然这时候资源已经生产好了,可以直接用,那么park操作当然可以直接运行下去。如果没有这个语义,那将非常难以操作。

  • 但是这个“许可”是不能叠加的,“许可”是一次性的。
    比如线程B连续调用了三次unpark函数,当线程A调用park函数就使用掉这个“许可”,如果线程A再次调用park,则进入等待状态。

Unsafe.park和Unsafe.unpark的底层实现原理

在Linux系统下,是用的Posix线程库pthread中的mutex(互斥量),condition(条件变量)来实现的。
mutex和condition保护了一个_counter的变量,当park时,这个变量被设置为0,当unpark时,这个变量被设置为1。

源码:
每个Java线程都有一个Parker实例,Parker类是这样定义的:

class Parker : public os::PlatformParker {  private:    volatile int _counter ;    ...  public:    void park(bool isAbsolute, jlong time);    void unpark();    ...  }  class PlatformParker : public CHeapObj<mtInternal> {    protected:      pthread_mutex_t _mutex [1] ;      pthread_cond_t  _cond  [1] ;      ...  }  

可以看到Parker类实际上用Posix的mutex,condition来实现的。
在Parker类里的_counter字段,就是用来记录“许可”的。

  • park 过程

当调用park时,先尝试能否直接拿到“许可”,即_counter>0时,如果成功,则把_counter设置为0,并返回:

void Parker::park(bool isAbsolute, jlong time) {    // Ideally we'd do something useful while spinning, such    // as calling unpackTime().    // Optional fast-path check:    // Return immediately if a permit is available.    // We depend on Atomic::xchg() having full barrier semantics    // since we are doing a lock-free update to _counter.    if (Atomic::xchg(0, &_counter) > 0) return;  

如果不成功,则构造一个ThreadBlockInVM,然后检查_counter是不是>0,如果是,则把_counter设置为0,unlock mutex并返回:

ThreadBlockInVM tbivm(jt);  if (_counter > 0)  { // no wait needed    _counter = 0;    status = pthread_mutex_unlock(_mutex);  

否则,再判断等待的时间,然后再调用pthread_cond_wait函数等待,如果等待返回,则把_counter设置为0,unlock mutex并返回:

if (time == 0) {    status = pthread_cond_wait (_cond, _mutex) ;  }  _counter = 0 ;  status = pthread_mutex_unlock(_mutex) ;  assert_status(status == 0, status, "invariant") ;  OrderAccess::fence();  
  • unpark 过程

当unpark时,则简单多了,直接设置_counter为1,再unlock mutex返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程:

void Parker::unpark() {    int s, status ;    status = pthread_mutex_lock(_mutex);    assert (status == 0, "invariant") ;    s = _counter;    _counter = 1;    if (s < 1) {       if (WorkAroundNPTLTimedWaitHang) {          status = pthread_cond_signal (_cond) ;          assert (status == 0, "invariant") ;          status = pthread_mutex_unlock(_mutex);          assert (status == 0, "invariant") ;       } else {          status = pthread_mutex_unlock(_mutex);          assert (status == 0, "invariant") ;          status = pthread_cond_signal (_cond) ;          assert (status == 0, "invariant") ;       }    } else {      pthread_mutex_unlock(_mutex);      assert (status == 0, "invariant") ;    }  }  
原创粉丝点击