线性回归详解

来源:互联网 发布:神代利世cos淘宝 编辑:程序博客网 时间:2024/05/16 00:40

说句废话哈,相信大多数人和我一样,最开始学习机器学习遇到的第一个模型便是线性回归,而且是一元线性回归,但就这个模型,其实包含了很多的知识点,矩阵计算,最小二乘、梯度下降等知识点,在这篇文章中,对回归模型在此进行阐述,在学习了之前的分类算法基础上,来看回归模型,也许另有体验。好了不废话了,进入正题。

 

1 摘要

      本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四节主要讲述了回归问题,回归属于有监督学习中的一种方法。该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。

     讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释。之后介绍了logistic回归。最后上升到理论层次,提出了一般回归。

2 问题引入

     这个例子来自http://www.cnblogs.com/LeftNotEasy/archive/2010/12/05/mathmatic_in_machine_learning_1_regression_and_gradient_descent.html

     假设有一个房屋销售的数据如下:

面积(m^2)

销售价钱(万元)

123

250

150

320

87

160

102

220

     这个表类似于北京5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积。y轴是房屋的售价,如下:

     clip_image001

     如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢?

     我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回。如果用一条直线去拟合,可能是下面的样子:

     clip_image002

     绿色的点就是我们想要预测的点。

     首先给出一些概念和常用的符号。

     房屋销售记录表:训练集(training set)或者训练数据(training data), 是我们流程中的输入数据,一般称为x

     房屋销售价钱:输出数据,一般称为y

     拟合的函数(或者称为假设或者模型):一般写做 y = h(x)

     训练数据的条目数(#training set),:一条训练数据是由一对输入数据和输出数据组成的输入数据的维度n (特征的个数,#features)

     这个例子的特征是两维的,结果是一维的。然而回归方法能够解决特征多维,结果是一维多离散值或一维连续值的问题。

3 学习过程

     下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。就如同上面的线性回归函数。

     clip_image003

4 线性回归

     线性回归假设特征和结果满足线性关系。其实线性关系的表达能力非常强大,每个特征对结果的影响强弱可以由前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达特征与结果之间的非线性关系。

     我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数:

     clip_image004

     θ在这儿称为参数,在这的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0 = 1,就可以用向量的方式来表示了:

     clip_image005

     我们程序也需要一个机制去评估我们θ是否比较好,所以说需要对我们做出的h函数进行评估,一般这个函数称为损失函数(loss function)或者错误函数(error function),描述h函数不好的程度,在下面,我们称这个函数为J函数

     在这儿我们可以认为错误函数如下:

     clip_image006

     这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2是为了在求导的时候,这个系数就不见了。

     至于为何选择平方和作为错误估计函数,讲义后面从概率分布的角度讲解了该公式的来源。

     如何调整θ以使得J(θ)取得最小值有很多方法,其中有最小二乘法(min square),是一种完全是数学描述的方法,和梯度下降法。

5 梯度下降法

     在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要在J(θ)最小的情况下才能确定。因此问题归结为求极小值问题,使用梯度下降法。梯度下降法最大的问题是求得有可能是全局极小值,这与初始点的选取有关。

     梯度下降法是按下面的流程进行的:

     1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。

     2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。

     梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。结果为

     clip_image007     

     迭代更新的方式有两种,一种是批梯度下降,也就是对全部的训练数据求得误差后再对θ进行更新,另外一种是增量梯度下降,每扫描一步都要对θ进行更新。前一种方法能够不断收敛,后一种方法结果可能不断在收敛处徘徊。

     一般来说,梯度下降法收敛速度还是比较慢的。

     另一种直接计算结果的方法是最小二乘法。

6 最小二乘法

     将训练特征表示为X矩阵,结果表示成y向量,仍然是线性回归模型,误差函数不变。那么θ可以直接由下面公式得出

clip_image008

     但此方法要求X是列满秩的,而且求矩阵的逆比较慢。

7 选用误差函数为平方和的概率解释

     假设根据特征的预测结果与实际结果有误差clip_image010,那么预测结果clip_image012和真实结果clip_image014满足下式:

clip_image015

     一般来讲,误差满足平均值为0的高斯分布,也就是正态分布。那么x和y的条件概率也就是

clip_image016

     这样就估计了一条样本的结果概率,然而我们期待的是模型能够在全部样本上预测最准,也就是概率积最大。注意这里的概率积是概率密度函数积,连续函数的概率密度函数与离散值的概率函数不同。这个概率积成为最大似然估计。我们希望在最大似然估计得到最大值时确定θ。那么需要对最大似然估计公式求导,求导结果既是

     clip_image017     

     这就解释了为何误差函数要使用平方和。

     当然推导过程中也做了一些假定,但这个假定符合客观规律。

8 带权重的线性回归

     上面提到的线性回归的误差函数里系统都是1,没有权重。带权重的线性回归加入了权重信息。

     基本假设是

     clip_image018     

     其中假设clip_image020符合公式

     clip_image021          

     其中x是要预测的特征,这样假设的道理是离x越近的样本权重越大,越远的影响越小。这个公式与高斯分布类似,但不一样,因为clip_image023不是随机变量。

     此方法成为非参数学习算法,因为误差函数随着预测值的不同而不同,这样θ无法事先确定,预测一次需要临时计算,感觉类似KNN。

9 分类和logistic回归

     一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大。如果非要应用进入,可以使用logistic回归。

     logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0和1上。

     logistic回归的假设函数如下,线性回归假设函数只是clip_image025

clip_image026

     logistic回归用来分类0/1问题,也就是预测结果属于0或者1的二值分类问题。这里假设了二值满足伯努利分布,也就是

clip_image027

     当然假设它满足泊松分布、指数分布等等也可以,只是比较复杂,后面会提到线性回归的一般形式。

     与第7节一样,仍然求的是最大似然估计,然后求导,得到迭代公式结果为

     clip_image028

     可以看到与线性回归类似,只是clip_image012[1]换成了clip_image030,而clip_image030[1]实际上就是clip_image012[2]经过g(z)映射过来的。


这里主要看看数学推导:

   线性回归:

           1: 函数模型(Model):

                 

           假设有训练数据

                

          那么为了方便我们写成矩阵的形式

                

         2: 损失函数(cost):

                 现在我们需要根据给定的X求解W的值,这里采用最小二乘法。   

     a.最小二乘法:

      何为最小二乘法,其实很简单。我们有很多的给定点,这时候我们需要找出一条线去拟合它,那么我先假设这个线的方程,然后把数据点代入假设的方程得到观测值,求使得实际值与观测值相减的平方和最小的参数。对变量求偏导联立便可求。

              因此损失代价函数为:

            

        3: 算法(algorithm):

             现在我们的目的就是求解出一个使得代价函数最小的W:

            a.矩阵满秩可求解时(求导等于0):

                        

          b.矩阵不满秩时(梯度下降):

      梯度下降算法是一种求局部最优解的方法,对于F(x),在a点的梯度是F(x)增长最快的方向,那么它的相反方向则是该点下降最快的方向,具体参考wikipedia。

     原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快;

     注意:当变量之间大小相差很大时,应该先将他们做处理,使得他们的值在同一个范围,这样比较准确。

    1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。

    2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。

    描述一下梯度减少的过程,对于我们的函数J(θ)求偏导J: 

    Repeat  until convergence:{

     image

    下面是更新的过程,也就是θi会向着梯度最小的方向进行减少。θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表示步长,也就是每次按照梯度减少的方向变化多少。

     image 

    }

     假设有数据集D时:

    

       对损失函数求偏导如下:

       

     使用矩阵表示(方便计算)

   


     

   

原创粉丝点击