Java多线程

来源:互联网 发布:2017年网络歌曲 编辑:程序博客网 时间:2024/06/06 08:41

一、java多线程实现方式

Java多线程实现方式主要有四种:继承Thread类、实现Runnable接口、实现Callable接口通过FutureTask包装器来创建Thread线程、使用ExecutorService、Callable、Future实现有返回结果的多线程。

1、继承Thread类创建线程

Thread类本质上是实现了Runnable接口的一个实例,代表一个线程的实例。启动线程的唯一方法就是通过Thread类的start()实例方法。start()方法是一个native方法,它将启动一个新线程,并执行run()方法。这种方式实现多线程很简单,通过自己的类直接extend Thread,并复写run()方法,就可以启动新线程并执行自己定义的run()方法。例如:

public class MyThread extends Thread {    public void run() {     System.out.println("MyThread.run()");    }  }  MyThread myThread1 = new MyThread();  MyThread myThread2 = new MyThread();  myThread1.start();  myThread2.start();  

2、实现Runnable接口创建线程

如果自己的类已经extends另一个类,就无法直接extends Thread,此时,可以实现一个Runnable接口,如下:

public class MyThread extends OtherClass implements Runnable {    public void run() {     System.out.println("MyThread.run()");    }  }  

为了启动MyThread,需要首先实例化一个Thread,并传入自己的MyThread实例:

MyThread myThread = new MyThread();  Thread thread = new Thread(myThread);  thread.start();  

3、实现Callable接口通过FutureTask包装器来创建Thread线程

Callable接口(也只有一个方法)定义如下:

public interface Callable<V>{   V call() throws Exception;   } 
public class SomeCallable<V> extends OtherClass implements Callable<V> {    @Override    public V call() throws Exception {        // TODO Auto-generated method stub        return null;    }}
Callable<V> oneCallable = new SomeCallable<V>();   //由Callable<Integer>创建一个FutureTask<Integer>对象:   FutureTask<V> oneTask = new FutureTask<V>(oneCallable);   //注释:FutureTask<Integer>是一个包装器,它通过接受Callable<Integer>来创建,它同时实现了Future和Runnable接口。   //由FutureTask<Integer>创建一个Thread对象:   Thread oneThread = new Thread(oneTask);   oneThread.start();   //至此,一个线程就创建完成了。

4、使用ExecutorService、Callable、Future实现有返回结果的线程

ExecutorService、Callable、Future三个接口实际上都是属于Executor框架。返回结果的线程是在JDK1.5中引入的新特征,有了这种特征就不需要再为了得到返回值而大费周折了。而且自己实现了也可能漏洞百出。

可返回值的任务必须实现Callable接口。类似的,无返回值的任务必须实现Runnable接口。

执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了。

注意:get方法是阻塞的,即:线程无返回结果,get方法会一直等待。

再结合线程池接口ExecutorService就可以实现传说中有返回结果的多线程了。

下面提供了一个完整的有返回结果的多线程测试例子,在JDK1.5下验证过没问题可以直接使用。代码如下:

import java.util.concurrent.*;  import java.util.Date;  import java.util.List;  import java.util.ArrayList;  /** * 有返回值的线程 */  @SuppressWarnings("unchecked")  public class Test {  public static void main(String[] args) throws ExecutionException,      InterruptedException {     System.out.println("----程序开始运行----");     Date date1 = new Date();     int taskSize = 5;     // 创建一个线程池     ExecutorService pool = Executors.newFixedThreadPool(taskSize);     // 创建多个有返回值的任务     List<Future> list = new ArrayList<Future>();     for (int i = 0; i < taskSize; i++) {      Callable c = new MyCallable(i + " ");      // 执行任务并获取Future对象      Future f = pool.submit(c);      // System.out.println(">>>" + f.get().toString());      list.add(f);     }     // 关闭线程池     pool.shutdown();     // 获取所有并发任务的运行结果     for (Future f : list) {      // 从Future对象上获取任务的返回值,并输出到控制台      System.out.println(">>>" + f.get().toString());     }     Date date2 = new Date();     System.out.println("----程序结束运行----,程序运行时间【"       + (date2.getTime() - date1.getTime()) + "毫秒】");  }  }  class MyCallable implements Callable<Object> {  private String taskNum;  MyCallable(String taskNum) {     this.taskNum = taskNum;  }  public Object call() throws Exception {     System.out.println(">>>" + taskNum + "任务启动");     Date dateTmp1 = new Date();     Thread.sleep(1000);     Date dateTmp2 = new Date();     long time = dateTmp2.getTime() - dateTmp1.getTime();     System.out.println(">>>" + taskNum + "任务终止");     return taskNum + "任务返回运行结果,当前任务时间【" + time + "毫秒】";  }  }  

代码说明:
上述代码中Executors类,提供了一系列工厂方法用于创建线程池,返回的线程池都实现了ExecutorService接口。
public static ExecutorService newFixedThreadPool(int nThreads)
创建固定数目线程的线程池。
public static ExecutorService newCachedThreadPool()
创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。
public static ExecutorService newSingleThreadExecutor()
创建一个单线程化的Executor。
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)
创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果Executor后台线程池还没有完成Callable的计算,这调用返回Future对象的get()方法,会阻塞直到计算完成。

内容来源:http://www.cnblogs.com/felixzh/p/6036074.html

二、线程同步

1、synchronized关键字修饰的方法

1.1、 将synchronized加在需要互斥的方法上

public synchronized void method(String name) {      // TODO 线程方法      //........}  

这种方式就相当于用this锁住整个方法内的代码块,如果用synchronized加在静态方法上,就相当于用××××.class锁住整个方法内的代码块。使用synchronized在某些情况下会造成死锁,死锁问题以后会说明。使用synchronized修饰的方法或者代码块可以看成是一个原子操作。
1.2、 使用synchronized同步代码块
即有synchronized关键字修饰的语句块。被该关键字修饰的语句块会自动被加上内置锁,从而实现同步

public class Bank {      private int count =0;//账户余额      //存钱      public   void addMoney(int money){          synchronized (this) {              count +=money;          }          System.out.println(System.currentTimeMillis()+"存进:"+money);      }      //取钱      public   void subMoney(int money){          synchronized (this) {              if(count-money < 0){                  System.out.println("余额不足");                  return;              }              count -=money;          }          System.out.println(+System.currentTimeMillis()+"取出:"+money);      }      //查询      public void lookMoney(){          System.out.println("账户余额:"+count);      }  }  

2、Volatile实现线程同步

a.volatile关键字为域变量的访问提供了一种免锁机制
b.使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新
c.因此每次使用该域就要重新计算,而不是使用寄存器中的值
d.volatile不会提供任何原子操作,它也不能用来修饰final类型的变量

public class Bank {      private volatile int count = 0;// 账户余额      // 存钱      public void addMoney(int money) {          count += money;          System.out.println(System.currentTimeMillis() + "存进:" + money);      }      // 取钱      public void subMoney(int money) {          if (count - money < 0) {              System.out.println("余额不足");              return;          }          count -= money;          System.out.println(+System.currentTimeMillis() + "取出:" + money);      }      // 查询      public void lookMoney() {          System.out.println("账户余额:" + count);      }  } 

3、使用重入锁实现线程同步

在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。ReentrantLock类是可重入、互斥、实现了Lock接口的锁, 它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力。
ReenreantLock类的常用方法有:
ReentrantLock() : 创建一个ReentrantLock实例
lock() : 获得锁
unlock() : 释放锁
注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用

public class Bank {      private  int count = 0;// 账户余额      //需要声明这个锁      private Lock lock = new ReentrantLock();      // 存钱      public void addMoney(int money) {          lock.lock();//上锁          try{          count += money;          System.out.println(System.currentTimeMillis() + "存进:" + money);          }finally{              lock.unlock();//解锁          }      }      // 取钱      public void subMoney(int money) {          lock.lock();          try{          if (count - money < 0) {              System.out.println("余额不足");              return;          }          count -= money;          System.out.println(+System.currentTimeMillis() + "取出:" + money);          }finally{              lock.unlock();          }      }      // 查询      public void lookMoney() {          System.out.println("账户余额:" + count);      }  } 

内容来源:http://developer.51cto.com/art/201509/490965.htm

原创粉丝点击