Android的线程消息机制(Handler机制剖析)

来源:互联网 发布:第四套人民币淘宝 编辑:程序博客网 时间:2024/05/22 07:53

先上handler机制的图片,然后来逐步分析,查看他的源码
这里写图片描述

Handler源码分析

创建Handler

Handler提供了多种构造方法的重载,主要分为两类,一类是不指定Looper对象,也就是直接使用当前线程的Looper,另一类是制定Looper,先看看他的构造方法

public Handler(Callback callback, boolean async) {        if (FIND_POTENTIAL_LEAKS) {            final Class<? extends Handler> klass = getClass();            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&                    (klass.getModifiers() & Modifier.STATIC) == 0) {                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +                    klass.getCanonicalName());            }        }        mLooper = Looper.myLooper();        if (mLooper == null) {            throw new RuntimeException(                "Can't create handler inside thread that has not called Looper.prepare()");        }        mQueue = mLooper.mQueue;        mCallback = callback;        mAsynchronous = async;    }

从这个构造函数可以看出,如果不是静态的内部类的话,会打印出内存泄漏的警告,而且可以知道在创建线程之前当前线程必须有looper对象,主线程的looper在源码中已经默认实现好了
在看下另外个构造方法

public Handler(Looper looper, Callback callback, boolean async) {        mLooper = looper;        mQueue = looper.mQueue;        mCallback = callback;        mAsynchronous = async;    }

就是简单对传入的looper进行赋值

发送消息

使用handler最多的就是sentMessage(message)先看看他的源码

public final boolean sendMessage(Message msg)    {        return sendMessageDelayed(msg, 0);    }

他其实就是调用sendMessageDelayed(Message,long)我们看下这个方法内部

public final boolean sendMessageDelayed(Message msg, long delayMillis)    {        if (delayMillis < 0) {            delayMillis = 0;        }        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);    }

就是为当前时间加上个目标时间,然后穿进去作为参数

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {        MessageQueue queue = mQueue;        if (queue == null) {            RuntimeException e = new RuntimeException(                    this + " sendMessageAtTime() called with no mQueue");            Log.w("Looper", e.getMessage(), e);            return false;        }        return enqueueMessage(queue, msg, uptimeMillis);    }

可以看到这个方法调用了enqueueMessage(MessageQueue,Message,long)方法,就是让消息去排队

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {        msg.target = this;        if (mAsynchronous) {            msg.setAsynchronous(true);        }        return queue.enqueueMessage(msg, uptimeMillis);    }

从这里可以看出两个事情
1.Message对象被加入MessageQueue的队列中
2.Messagetarget是用来持有Handler的强应用,而Handler如果是非静态内部类,是默认持有外部Activity强引用的,这样就会造成所谓的内存泄漏

除了sentMessage外,还有一种就是post(Runnable)

public final boolean post(Runnable r)    {       return  sendMessageDelayed(getPostMessage(r), 0);    }

其实就是调用了sentMessageDelayed(Message,long),只不过就是把Runable封装进入Message

private static Message getPostMessage(Runnable r) {        Message m = Message.obtain();        m.callback = r;        return m;    }

最后被送入消息队列中

处理消息

当消息被丢进消息对垒中,就要被处理,我们经常用Handler就是重写handleMessage(Message)方法来处理Message,其实还有另外一种方式就是实现Handler.Callback接口,这个接口要求必须实现带boolean值得handleMessage(Message)方法,这两种实现方法如下

 private static class MyHandler extends Handler{        @Override        public void handleMessage(Message msg) {            super.handleMessage(msg);            //处理消息,        }    }
private static class MyHanderCallback implements Handler.Callback{        @Override        public boolean handleMessage(Message msg) {            return false;        }    }    private Handler myHandler = new Handler(new MyHanderCallback());

这两种处理方式有什么区别呢?就在于,第二种实现handler.Callback的处理方法是有boolean值得,Handler会优先处理Handler.Callback实现,然后根据返回值决定是否调用Handler的handlerMassage(Message)方法,接下来看下dispatchMessage(Message)方法

 public void dispatchMessage(Message msg) {        if (msg.callback != null) {            handleCallback(msg);//处理Runable类型消息        } else {            if (mCallback != null) {                if (mCallback.handleMessage(msg)) {//当Callback.handleMessage返回true时候直接return,就不再执行handleMessage                    return;                }            }            handleMessage(msg);        }    }

当一个消息从队列中被取出时候,会通过dispatchMessage(Message)方法分配给Handler。在处理消息的时候优先处理Runable类型的消息,然后再根据Handle.Callback.handleMessage(Message)最后才是Handler.handleMessage(Message)

Message源码分析

Message相当于一个消息媒介,我们通过对这个message对象进行设置,然后最后将他发送出去

创建Message

创建消息时我们不是直接newMessage,而是通过Message.obtain()方法,从Message内部维护的一个消息池里面获取一个Message对象,这样的话就可以复用,而不会因为频繁发送消息而造成频繁gc,内存抖动那些,先看看Message源码

public final class Message Implements Parcelable{    private static final int MAX_POOL_SIZE = 50//消息池最大数量为50    private static Message sPool;//消息池    Message next;//消息池实际上是一个链表结构    public static Message obtain() {            synchronized (sPoolSync) {                if (sPool != null) {                    Message m = sPool;                    sPool = m.next;                    m.next = null;                    m.flags = 0; // clear in-use flag                    sPoolSize--;                    return m;                }            }            return new Message();        } }

他是通过维护一个链表来构成消息池子的,只要链表中有一个消息对象,就从这里取出

回收Message

为了实现复用,Message被处理完后就会回到消息池中,回收的过程就是清空所有数据,全部设置被默认值

public void recycle() {        if (isInUse()) {            if (gCheckRecycle) {                throw new IllegalStateException("This message cannot be recycled because it "                        + "is still in use.");            }            return;        }        recycleUnchecked();    }
void recycleUnchecked() {        // Mark the message as in use while it remains in the recycled object pool.        // Clear out all other details.        flags = FLAG_IN_USE;        what = 0;        arg1 = 0;        arg2 = 0;        obj = null;        replyTo = null;        sendingUid = -1;        when = 0;        target = null;        callback = null;        data = null;        synchronized (sPoolSync) {            if (sPoolSize < MAX_POOL_SIZE) {                next = sPool;                sPool = this;                sPoolSize++;            }        }    }

MessageQueue源码分析

MessageQueue就是消息队列,我们通过Handler发送消息都会进入到这个Mess个Queue中,之后Looper会提取消息进行处理,看看MessageQUeue源码

消息入列

先从他的enqueueMessage(Message,long)源码看下

boolean enqueueMessage(Message msg, long when) {        synchronized (this) {            msg.markInUse();            msg.when = when;            Message p = mMessages;            boolean needWake;            if (p == null || when == 0 || when < p.when) {                msg.next = p;                mMessages = msg;                needWake = mBlocked;            } else {               //根据时间节点来插入Message                needWake = mBlocked && p.target == null && msg.isAsynchronous();                Message prev;                for (;;) {                    prev = p;                    p = p.next;                    if (p == null || when < p.when) {                        break;                    }                    if (needWake && p.isAsynchronous()) {                        needWake = false;                    }                }                msg.next = p; // invariant: p == prev.next                prev.next = msg;            }        }    }

可以看出他是根据when这个时间节点进行排队的,根据时间的排序找到一个合适的Message对象插入队列中

消息出列

接下来看看消息出列的代码,也就是MessageQueue.next()方法,Looper实际上通过这个方法获取下一个要执行的Message对象,

Message next() {        int pendingIdleHandlerCount = -1; // -1 only during first iteration        int nextPollTimeoutMillis = 0;        for (;;) {            synchronized (this) {                // Try to retrieve the next message.  Return if found.                final long now = SystemClock.uptimeMillis();                Message prevMsg = null;                Message msg = mMessages;                if (msg != null && msg.target == null)                     do {                        prevMsg = msg;                        msg = msg.next;                    } while (msg != null && !msg.isAsynchronous());                }                if (msg != null) {                    if (now < msg.when) {                       //还没有到达时间的情况,就设置一个定时器让他唤醒                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                    } else {                        // Got a message.                        mBlocked = false;                        if (prevMsg != null) {                        //有barrier情况                            prevMsg.next = msg.next;                        } else {                        //无barrier的情况                            mMessages = msg.next;                        }                        msg.next = null;                        return msg;                    }                } else {                    // No more messages.                    nextPollTimeoutMillis = -1;                }                // Process the quit message now that all pending messages have been handled.                if (mQuitting) {                    dispose();                    return null;                }                // If first time idle, then get the number of idlers to run.                // Idle handles only run if the queue is empty or if the first message                // in the queue (possibly a barrier) is due to be handled in the future.                if (pendingIdleHandlerCount < 0                        && (mMessages == null || now < mMessages.when)) {                    pendingIdleHandlerCount = mIdleHandlers.size();                }                if (pendingIdleHandlerCount <= 0) {                    // No idle handlers to run.  Loop and wait some more.                    mBlocked = true;                    continue;                }                if (mPendingIdleHandlers == null) {                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];                }                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);            }            // Run the idle handlers.            // We only ever reach this code block during the first iteration.            for (int i = 0; i < pendingIdleHandlerCount; i++) {                final IdleHandler idler = mPendingIdleHandlers[i];                mPendingIdleHandlers[i] = null; // release the reference to the handler                boolean keep = false;                try {                    keep = idler.queueIdle();                } catch (Throwable t) {                    Log.wtf(TAG, "IdleHandler threw exception", t);                }                if (!keep) {                    synchronized (this) {                        mIdleHandlers.remove(idler);                    }                }            }            // Reset the idle handler count to 0 so we do not run them again.            pendingIdleHandlerCount = 0;            // While calling an idle handler, a new message could have been delivered            // so go back and look again for a pending message without waiting.            nextPollTimeoutMillis = 0;        }    }

上面逻辑大概就是:判断消息队列中第一个消息是否到达执行时间点,如果满足条件就移除并返回第一个Message对象,否则逻辑往下走执行idlerHandler,所谓的idlerHandler就是在空闲的时候会被执行一次,如果queueIdle返回false的话就会执行之后移除空闲队列

关闭队列

void quit(boolean safe) {        if (!mQuitAllowed) {            throw new IllegalStateException("Main thread not allowed to quit.");        }        synchronized (this) {            if (mQuitting) {                return;            }            mQuitting = true;            if (safe) {            //安全的方式关闭队列            //就是对没有到达时间点的消息进行移除,把没有到达时间点的执行完先                removeAllFutureMessagesLocked();            } else {            //直接暴力的关闭队列                removeAllMessagesLocked();            }            // We can assume mPtr != 0 because mQuitting was previously false.            nativeWake(mPtr);        }    }

looper源码分析

looper里面包换了一个消息队列,它不断从消息队列获取消息并执行

创建Looper

调用LooperPrepare()方法,

  public static void prepare() {        prepare(true);    }    private static void prepare(boolean quitAllowed) {        if (sThreadLocal.get() != null) {            throw new RuntimeException("Only one Looper may be created per thread");        }        sThreadLocal.set(new Looper(quitAllowed));    }

就是创建一个Looper并且存如ThreadLocal中。如果已经存在就抛异常

执行Looper

创建完Looper之后要做的就是调用Looper.loop()方法让Looper不断从消息队列中获取并处理消息。看下Looper.loop()源码

public static void loop() {        final Looper me = myLooper();        final MessageQueue queue = me.mQueue;        for (;;) {            Message msg = queue.next(); // might block            if (msg == null) {                // No message indicates that the message queue is quitting.                return;            }                     msg.target.dispatchMessage(msg);            msg.recycleUnchecked();        }    }

伪代码如上,就是开启一个循环,不断从消息队列里面取,消息,这个消息队列是一个阻塞队列。

BlockingQueue是个接口,有如下实现类:
1. ArrayBlockQueue:一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。创建其对象必须明确大小,像数组一样。
2. LinkedBlockQueue:一个可改变大小的阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。创建其对象如果没有明确大小,默认值是Integer.MAX_VALUE。链接队列的吞吐量通常要高于基于数组的队列,但是在大多数并发应用程序中,其可预知的性能要低。

   3. PriorityBlockingQueue:类似于LinkedBlockingQueue,但其所含对象的排序不是FIFO,而是依据对象的自然排序顺序或者是构造函数所带的Comparator决定的顺序。   4. SynchronousQueue:同步队列。同步队列没有任何容量,每个插入必须等待另一个线程移除,反之亦然
原创粉丝点击