神经网络之python实现

来源:互联网 发布:网络阅卷系统 编辑:程序博客网 时间:2024/06/15 10:26

原理

参考 Andrew Ng 课程
https://mooc.study.163.com/course/deeplearning_ai-2001281002#/info

实现过程

MNIST数据集
每张图像是28 * 28像素 手写数字
- train-images-idx3-ubyte 训练数据图像 (60,000)
- train-labels-idx1-ubyte 训练数据label
- t10k-images-idx3-ubyte 测试数据图像 (10,000)
- t10k-labels-idx1-ubyte 测试数据label

from __future__ import print_functionimport numpy as npimport random#初始化w b 输入为 [每层的size] eg: [4,5,2] 输入层为4 隐藏层为 5 输出层为 2def initwb(sizes):    num_layers_ = len(sizes)  #层数    w_ = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] #1-最后二层 与 2-最后一层 用zip索引形成元组索引 生成后一层x前一层的矩阵    b_ = [np.random.randn(y, 1) for y in sizes[1:]]  # w_、b_初始化为正态分布随机数    return w_ ,b_,num_layers_
# Sigmoid函数,S型曲线,def sigmoid(z):    return 1.0/(1.0+np.exp(-z))
# Sigmoid函数的导函数def sigmoid_prime(z):#     return (1.0/(1.0+np.exp(-z)))/(1+1.0/(1.0+np.exp(-z)))    return sigmoid(z)/(1+sigmoid(z))
#定义前馈(feedforward)函数 给神经网络的输入x,输出对应的值def feedforward(w_,b_,x):    for b, w in zip(b_, w_): ##前向传播 每层进行计算 zip把每层的w b给选择出来        x = sigmoid(np.dot(w, x)+b) ##计算每层的  w*输入+b    return x
##计算损失函数倒数def cost_derivative(output_activations, y):    return (output_activations-y)
##反向传播def backprop(x, y,w_,b_,num_layers_):    nabla_b = [np.zeros(b.shape) for b in b_]    nabla_w = [np.zeros(w.shape) for w in w_]    #激活函数输入    activation = x    activations = [x]    zs = []    for b, w in zip(b_, w_):        z = np.dot(w, activation)+b        zs.append(z)        activation = sigmoid(z)        activations.append(activation)    delta = cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])    nabla_b[-1] = delta    nabla_w[-1] = np.dot(delta, activations[-2].transpose()) ##transpose转置    for l in range(2, num_layers_):        z = zs[-l]        sp = sigmoid_prime(z)        delta = np.dot(w_[-l+1].transpose(), delta) * sp        nabla_b[-l] = delta        nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())    return (nabla_b, nabla_w)
##更新每个块 进行参数训练def update_mini_batch(mini_batch, eta,w_,b_,num_layers_):    nabla_b = [np.zeros(b.shape) for b in b_]    nabla_w = [np.zeros(w.shape) for w in w_]    for x, y in mini_batch:        delta_nabla_b, delta_nabla_w = backprop(x, y,w_,b_,num_layers_)        nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]        nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]        w_ = [w-(eta/len(mini_batch))*nw for w, nw in zip(w_, nabla_w)]        b_ = [b-(eta/len(mini_batch))*nb for b, nb in zip(b_, nabla_b)]    return  w_,b_
def evaluate(test_data,w_,b_):    test_results = [(np.argmax(feedforward(w_,b_,x)), y) for (x, y) in test_data]    return sum(int(x == y) for (x, y) in test_results)
#随机梯度下降 training_data是训练数据(x, y); epochs是训练次数; mini_batch_size是每次训练样本数; eta是learning ratedef SGD(training_data, epochs, mini_batch_size, eta, test_data=None,w_=None, b_=None, num_layers_=None):    if test_data:        n_test = len(test_data)    n = len(training_data)    for j in range(epochs):        random.shuffle(training_data) #打乱顺序        mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)] #生成不同块        for mini_batch in mini_batches:            w_,b_=update_mini_batch(mini_batch, eta,w_,b_,num_layers_)        if test_data:            print("Epoch {0}: {1} / {2}".format(j, evaluate(test_data,w_,b_), n_test)) ##{索引} format 索引值        else:            print("Epoch {0} complete".format(j))     return  w_,b_     
##预测def predict(data,w_,b_):    value = feedforward(w_,b_,data)    return value.tolist().index(max(value))
##处理数据import os, structfrom array import array as pyarrayfrom numpy import append, array, int8, uint8, zerosdef load_mnist(dataset="training_data", digits=np.arange(10), path="./MNIST_data/"):    if dataset == "training_data":        fname_image = os.path.join(path, 'train-images-idx3-ubyte')        fname_label = os.path.join(path, 'train-labels-idx1-ubyte')    elif dataset == "testing_data":        fname_image = os.path.join(path, 't10k-images-idx3-ubyte')        fname_label = os.path.join(path, 't10k-labels-idx1-ubyte')    else:        raise ValueError("dataset must be 'training_data' or 'testing_data'")    flbl = open(fname_label, 'rb')    magic_nr, size = struct.unpack(">II", flbl.read(8))    lbl = pyarray("b", flbl.read())    flbl.close()    fimg = open(fname_image, 'rb')    magic_nr, size, rows, cols = struct.unpack(">IIII", fimg.read(16))    img = pyarray("B", fimg.read())    fimg.close()    ind = [ k for k in range(size) if lbl[k] in digits ]    N = len(ind)    images = zeros((N, rows, cols), dtype=uint8)    labels = zeros((N, 1), dtype=int8)    for i in range(len(ind)):        images[i] = array(img[ ind[i]*rows*cols : (ind[i]+1)*rows*cols ]).reshape((rows, cols))        labels[i] = lbl[ind[i]]    return images, labelsdef load_samples(dataset="training_data"):    image,label = load_mnist(dataset)    #print(image[0].shape, image.shape)   # (28, 28) (60000, 28, 28)    #print(label[0].shape, label.shape)   # (1,) (60000, 1)    #print(label[0])   # 5    # 把28*28二维数据转为一维数据    X = [np.reshape(x,(28*28, 1)) for x in image]    X = [x/255.0 for x in X]   # 灰度值范围(0-255),转换为(0-1)    #print(X.shape)    # 5 -> [0,0,0,0,0,1.0,0,0,0]      1 -> [0,1.0,0,0,0,0,0,0,0]    def vectorized_Y(y):        e = np.zeros((10, 1))        e[y] = 1.0        return e    # 把Y值转换为神经网络的输出格式    if dataset == "training_data":        Y = [vectorized_Y(y) for y in label]        pair = list(zip(X, Y))        return pair    elif dataset == 'testing_data':        pair = list(zip(X, label))        return pair    else:        print('Something wrong')
##定义 输入 输出 大小INPUT = 28*28OUTPUT = 10##提取数据train_set = load_samples(dataset='training_data')test_set = load_samples(dataset='testing_data') ## 每一个样本是 28*28=784x1 + label
##初始化权重w_,b_,num_layers_=initwb([INPUT, 36, OUTPUT]) new_w,new_b=SGD(train_set, 10, 100, 1.0, test_data=test_set,w_=w_,b_=b_,num_layers_=num_layers_)
Epoch 0: 2628 / 10000Epoch 1: 7228 / 10000Epoch 2: 8513 / 10000Epoch 3: 8603 / 10000Epoch 4: 8395 / 10000Epoch 5: 8481 / 10000Epoch 6: 8388 / 10000Epoch 7: 8371 / 10000Epoch 8: 8468 / 10000Epoch 9: 8394 / 10000
#准确率correct = 0;for test_feature in test_set:    if predict(test_feature[0],new_w,new_b) == test_feature[1][0]:        correct += 1print("准确率: ", float(correct)/float(len(test_set)))
准确率:  0.8394

参考

使用Python实现神经网络

原创粉丝点击