Linux系统ELF程序的执行过程

来源:互联网 发布:网络信息安全 电子书 编辑:程序博客网 时间:2024/06/05 16:25

[摘要]

[正文]用后态执行

[正文]内核态执行

[ELF文件加载]

[实例]

[动态库加载]

[总结]


注意:请使用谷歌浏览器阅读(IE浏览器排版混乱)


【摘要】

本文将介绍linux程序的执行过程,并以实际问题为切入点简单介绍下ELF程序的加载过程。

【正文】用后态执行

我们知道在linux系统中可以通过诸如"./debug"方式执行一个程序,那么这个程序的执行过程中linux系统都做了什么?

本文以debug程序为例,介绍linux内核是如何一步步将debug进程执行起来的.

1 执行过程:

以system()实现为例,它是一种典型的可执行程序运行过程:

#include <sys/types.h>#include <sys/wait.h>#include <errno.h>#include <unistd.h>int system(const char * cmdstring){    pid_t pid;    int status;    if(cmdstring == NULL){               return (1);    }    if((pid = fork())<0){            status = -1;    }    else if(pid = 0){        execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);        -exit(127); //子进程正常执行则不会执行此语句    }    else{           while(waitpid(pid, &status, 0) < 0){                if(errno != EINTER){                    status = -1;                    break;                }            }     }     return status;}

观察上面system实现:

1)system在当前进程中fork创建了一个子进程,并执行execl函数运行可执行文件;

2)execl/execve系列函数执行elf文件;

实际上系统通过execve->do_execve_common函数,将上步创建的子进程,完全替换成了可执行程序.

这个替换过程,其实也就是可执行程序的加载过程,也是本文着重介绍的内容.

3) execve使用实例:

#include<unistd.h>

int execve(const char *filename, char *const argv[], char *const envp[]); 

#include<stdio.h>#include<unistd.h>int main(int arg, char **args){    char *argv[]={"ls","-al","/home/", NULL};    char *envp[]={0,NULL};     execve("/bin/ls",argv,envp);}
【正文】内核态执行

linux系统中,可执行程序大多属于ELF文件格式.

本节以实例介绍:execve("/home/debug",NULL,NULL);其中debug程序是elf格式.

当用后执行execve时,系统都做了什么?下面逐层分析:

1 系统调用:execve->do_execve->do_execve_common

/* filename为可执行文件:/home/debug;argv为NULL,表示可行程序不带参数;envp为NULL,表示没有指定环境变量;  */ int do_execve(const char *filename,const char __user *const __user *__argv,                  const char __user *const __user *__envp){struct user_arg_ptr argv = { .ptr.native = __argv };struct user_arg_ptr envp = { .ptr.native = __envp };return do_execve_common(filename, argv, envp);}

execve->do_execve->do_execve_common()注意此时当前进程是上文中创建的子进程。

bprm_mm_init()完成进程地址空间vma(包括栈)的初始化.

/* * sys_execve() executes a new program. */static int do_execve_common(const char *filename,     struct user_arg_ptr argv,     struct user_arg_ptr envp){/*注意linux_binprm是核心数据结构,它保存了可执行文件的信息;*/struct linux_binprm *bprm;struct file *file;struct files_struct *displaced;bool clear_in_exec;int retval;const struct cred *cred = current_cred();/** We move the actual failure in case of RLIMIT_NPROC excess from* set*uid() to execve() because too many poorly written programs* don't check setuid() return code.  Here we additionally recheck* whether NPROC limit is still exceeded.*/if ((current->flags & PF_NPROC_EXCEEDED) &&   atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {retval = -EAGAIN;goto out_ret;}/* We're below the limit (still or again), so we don't want to make* further execve() calls fail. */current->flags &= ~PF_NPROC_EXCEEDED;retval = unshare_files(&displaced);if (retval)goto out_ret;retval = -ENOMEM;/*申请linux_binprm描述符,用以保存ELF可执行文件信息*/bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);if (!bprm)goto out_files;/*生成bprm->cred即准备可执行程序运行的用户和组信息,主要根据当前进程的task->cred信息生成*/retval = prepare_bprm_creds(bprm);if (retval)goto out_free;retval = check_unsafe_exec(bprm);if (retval < 0)goto out_free;clear_in_exec = retval;current->in_execve = 1;/*1:打开可执行程序 /home/debug;*/file = open_exec(filename);retval = PTR_ERR(file);if (IS_ERR(file))goto out_unmark;sched_exec();/*bprm->file为/home/debug文件描述符*/bprm->file = file;/*可执行文件名保存到bprm->filename中*/bprm->filename = filename;bprm->interp = filename;/*生成bprm->mm,即准备可执行程序的mm_struct信息,注意此时生成栈空间信息,不过后面会对栈空间再次调整注意此处的bprm->mm不是当前进程的,是bprm_mm_init申请的以后用作/home/debug进程的mm_struct;*/retval = bprm_mm_init(bprm);if (retval)goto out_file;/*可执行文件参数个数,对/home/debug来说argc=0,因为指定参数为NULL*/bprm->argc = count(argv, MAX_ARG_STRINGS);if ((retval = bprm->argc) < 0)goto out;/*envc=0参加bprm->argc*/bprm->envc = count(envp, MAX_ARG_STRINGS);if ((retval = bprm->envc) < 0)goto out;/*elf头保存到bprm->buf中;实现方式: kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);//128bytes*/retval = prepare_binprm(bprm);if (retval < 0)goto out;retval = copy_strings_kernel(1, &bprm->filename, bprm);if (retval < 0)goto out;/*保存execve中指定的环境变量到linux_binprm结构中*/bprm->exec = bprm->p;retval = copy_strings(bprm->envc, envp, bprm);if (retval < 0)goto out;/*保存execve中指定的可执行程序参数到linux_binprm结构中*/retval = copy_strings(bprm->argc, argv, bprm);if (retval < 0)goto out;/*    该函数负责从flash上加载ELF文件:并将当前子进程信息替换为可执行文件中读取的信息.  elf_format->load_binary=load_elf_binary->arch_setup_additional_pages : register_binfmt中注册的elf_format  ->install_special_mapping->insert_vm_struct*/retval = search_binary_handler(bprm);if (retval < 0)goto out;/* execve succeeded */current->fs->in_exec = 0;current->in_execve = 0;acct_update_integrals(current);free_bprm(bprm);if (displaced)put_files_struct(displaced);return retval;out:if (bprm->mm) {acct_arg_size(bprm, 0);mmput(bprm->mm);}out_file:if (bprm->file) {allow_write_access(bprm->file);fput(bprm->file);}out_unmark:if (clear_in_exec)current->fs->in_exec = 0;current->in_execve = 0;out_free:free_bprm(bprm);out_files:if (displaced)reset_files_struct(displaced);out_ret:return retval;}

2.1 ELF头读取过程:do_execve_common()->prepare_binprm()

int prepare_binprm(struct linux_binprm *bprm){umode_t mode;struct inode * inode = file_inode(bprm->file);int retval;mode = inode->i_mode;if (bprm->file->f_op == NULL)return -EACCES;/* clear any previous set[ug]id data from a previous binary */bprm->cred->euid = current_euid();bprm->cred->egid = current_egid();if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&   !current->no_new_privs &&   kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&   kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {/* Set-uid? */if (mode & S_ISUID) {bprm->per_clear |= PER_CLEAR_ON_SETID;bprm->cred->euid = inode->i_uid;}/* Set-gid? *//** If setgid is set but no group execute bit then this* is a candidate for mandatory locking, not a setgid* executable.*/if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {bprm->per_clear |= PER_CLEAR_ON_SETID;bprm->cred->egid = inode->i_gid;}}/* fill in binprm security blob */retval = security_bprm_set_creds(bprm);if (retval)return retval;bprm->cred_prepared = 1;memset(bprm->buf, 0, BINPRM_BUF_SIZE);/*elf头保存到bprm->buf中*/return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);}

[ELF文件加载]

ELF文件格式:https://baike.baidu.com/item/ELF/7120560?fr=aladdin

3.1文件头(Elf header) 

Elf头在程序的开始部位,作为引路表描述整个ELF的文件结构,其信息大致分为四部分:一是系统相关信息,二是目标文件类型,三是加载相关信息,四是链接相关信息。 

其中系统相关信息包括elf文件魔数(标识elf文件),平台位数,数据编码方式,elf头部版本,硬件平台e_machine,目标文件版本 e_version,处理器特定标志e_ftags:这些信息的引入极大增强了elf文件的可移植性,使交叉编译成为可能。目标文件类型用e_type的值表示,可重定位文件为1,可执行文件为2,共享文件为3;加载相关信息有:程序进入点e_entry.程序头表偏移量e_phoff,elf头部长度 e_ehsize,程序头表中一个条目的长度e_phentsize,程序头表条目数目e_phnum;链接相关信息有:节头表偏移量e_shoff,节头表中一个条目的长度e_shentsize,节头表条目个数e_shnum ,节头表字符索引e shstmdx。可使用命令"readelf -h filename"来察看文件头的内容。 

文件头的数据结构如下: 

typedef struct elf32_hdr{ unsigned char e_ident[EI_NIDENT]; Elf32_Half e_type;//目标文件类型 Elf32_Half e_machine;//硬件平台 Elf32_Word e_version;//elf头部版本 Elf32_Addr e_entry;//程序进入点 Elf32_Off e_phoff;//程序头表偏移量 Elf32_Off e_shoff;//节头表偏移量 Elf32_Word e_flags;/处理器特定标志 Elf32_Half e_ehsize;//elf头部长度 Elf32_Half e_phentsize;//程序头表中一个条目的长度 Elf32_Half e_phnum;//程序头表条目数目 Elf32_Half e_shentsize;//节头表中一个条目的长度 Elf32_Half e_shnum;//节头表条目个数 Elf32_Half e_shstrmdx;//节头表字符索引 }Elf32_Ehdr; 
程序头表(program header table

程序头表告诉系统如何建立一个进程映像.它是从加载执行的角度来看待elf文件.从它的角度看.elf文件被分成许多段,elf文件中的代码、链接信息和注释都以段的形式存放。每个段都在程序头表中有一个表项描述,包含以下属性:段的类型,段的驻留位置相对于文件开始处的偏移,段在内存中的首字节地址,段的物理地址,段在文件映像中的字节数.段在内存映像中的字节数,段在内存和文件中的对齐标记。可用"readelf -l filename"察看程序头表中的内容。程序头表的结构如下: 

typedef struct elf32_phdr{ Elf32_Word p_type; //段的类型 Elf32_Off p_offset; //段的位置相对于文件开始处的偏移 Elf32_Addr p_vaddr; //段在内存中的首字节地址 Elf32_Addr p_paddr;//段的物理地址 Elf32_Word p_filesz;//段在文件映像中的字节数 Elf32_Word p_memsz;//段在内存映像中的字节数 Elf32_Word p_flags;//段的标记 Elf32_Word p_align;,/段在内存中的对齐标记 )Elf32_Phdr; 
节头表(section header table

节头表描述程序节,为编译器和链接器服务。它把elf文件分成了许多节.每个节保存着用于不同目的的数据.这些数据可能被前面的程序头重复使用,完成一次任务所需的信息往往被分散到不同的节里。由于节中数据的用途不同,节被分成不同的类型,每种类型的节都有自己组织数据的方式。每一个节在节头表中都有一个表项描述该节的属性,节的属性包括小节名在字符表中的索引,类型,属性,运行时的虚拟地址,文件偏移,以字节为单位的大小,小节的对齐等信息,可使用"readelf -S filename"来察看节头表的内容。节头表的结构如下: 

typedef struct{ Elf32_Word sh_name;//小节名在字符表中的索引 E1t32_Word sh_type;//小节的类型 Elf32_Word sh_flags;//小节属性 Elf32_Addr sh_addr; //小节在运行时的虚拟地址 Elf32_Off sh_offset;//小节的文件偏移 Elf32_Word sh_size;//小节的大小.以字节为单位 Elf32_Word sh_link;//链接的另外一小节的索引 Elf32 Word sh_info;//附加的小节信息 Elf32 Word sh_addralign;//小节的对齐 Elf32 Word sh_entsize; //一些sections保存着一张固定大小入口的表。就像符号表 }Elf32_Shdr; 
3.2 ELF文件加载的的实现代码

代码流程: do_execve_common()->search_binary_handler->load_binary=load_elf_binary()

static int load_elf_binary(struct linux_binprm *bprm){struct file *interpreter = NULL; /* to shut gcc up */  unsigned long load_addr = 0, load_bias = 0;int load_addr_set = 0;char * elf_interpreter = NULL;unsigned long error;struct elf_phdr *elf_ppnt, *elf_phdata;unsigned long elf_bss, elf_brk;int retval, i;unsigned int size;unsigned long elf_entry;unsigned long interp_load_addr = 0;unsigned long start_code, end_code, start_data, end_data;unsigned long reloc_func_desc __maybe_unused = 0;int executable_stack = EXSTACK_DEFAULT;unsigned long def_flags = 0;struct pt_regs *regs = current_pt_regs();//Elf32_Ehdrstruct {struct elfhdr elf_ex;struct elfhdr interp_elf_ex;} *loc;loc = kmalloc(sizeof(*loc), GFP_KERNEL);if (!loc) {retval = -ENOMEM;goto out_ret;}/*进程的ELF头保存在此*//* Get the exec-header */loc->elf_ex = *((struct elfhdr *)bprm->buf);retval = -ENOEXEC;/* First of all, some simple consistency checks */if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)goto out;if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)goto out;if (!elf_check_arch(&loc->elf_ex))goto out;if (!bprm->file->f_op || !bprm->file->f_op->mmap)goto out;/* Now read in all of the header information */if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))goto out;if (loc->elf_ex.e_phnum < 1 ||loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))goto out;size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);retval = -ENOMEM;elf_phdata = kmalloc(size, GFP_KERNEL);if (!elf_phdata)goto out;/* 保存所有程序段到elf_phdata;注意此处elf_phdr与elfhdr的区别1  elf_phdr如下:程序头Program Headers:  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align  EXIDX          0x000000 0x00000000 0x00000000 0x00000 0x00000 R   0x4  PHDR           0x000034 0x00008034 0x00008034 0x00120 0x00120 R E 0x4  INTERP         0x000154 0x00008154 0x00008154 0x00019 0x00019 R   0x1      [Requesting program interpreter: /lib/ld-linux-armhf.so.3]  LOAD           0x000000 0x00008000 0x00008000 0xb22914 0xb22914 R E 0x8000  LOAD           0xb22914 0x00b32914 0x00b32914 0x16b4a0 0x3a22d0 RW  0x8000  DYNAMIC        0xb25df8 0x00b35df8 0x00b35df8 0x00178 0x00178 RW  0x4  NOTE           0x000170 0x00008170 0x00008170 0x00044 0x00044 R   0x4  TLS            0xb22914 0x00b32914 0x00b32914 0x00000 0x00004 R   0x4  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4  2  elfhder如下:elf头  ELF Header:  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00   Class:                             ELF32  Data:                              2's complement, little endian  Version:                           1 (current)  OS/ABI:                            UNIX - System V  ABI Version:                       0  Type:                              EXEC (Executable file)  Machine:                           ARM  Version:                           0x1  Entry point address:               0x2fa31  Start of program headers:          52 (bytes into file)  Start of section headers:          13164260 (bytes into file)  Flags:                             0x5000402, has entry point, Version5 EABI, <unknown>  Size of this header:               52 (bytes)  Size of program headers:           32 (bytes)  Number of program headers:         9  Size of section headers:           40 (bytes)  Number of section headers:         28  Section header string table index: 27*/            /* 程序段存到elf_phdata */retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,    (char *)elf_phdata, size);if (retval != size) {if (retval >= 0)retval = -EIO;goto out_free_ph;}elf_ppnt = elf_phdata;elf_bss = 0;elf_brk = 0;start_code = ~0UL;end_code = 0;start_data = 0;end_data = 0;/*遍历程序段,每个段32字节描述*/for (i = 0; i < loc->elf_ex.e_phnum; i++) {if (elf_ppnt->p_type == PT_INTERP) {/* This is the program interpreter used for* shared libraries - for now assume that this* is an a.out format binary*/retval = -ENOEXEC;if (elf_ppnt->p_filesz > PATH_MAX ||    elf_ppnt->p_filesz < 2)goto out_free_ph;retval = -ENOMEM;elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);if (!elf_interpreter)goto out_free_ph;retval = kernel_read(bprm->file, elf_ppnt->p_offset,    elf_interpreter,    elf_ppnt->p_filesz);if (retval != elf_ppnt->p_filesz) {if (retval >= 0)retval = -EIO;goto out_free_interp;}/* make sure path is NULL terminated */retval = -ENOEXEC;if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')goto out_free_interp; /*elf_interpreter:/lib/ld-linux-armhf.so.3;bprm->filename:/bin/echo 见上面注释*/interpreter = open_exec(elf_interpreter);retval = PTR_ERR(interpreter);if (IS_ERR(interpreter))goto out_free_interp;/** If the binary is not readable then enforce* mm->dumpable = 0 regardless of the interpreter's* permissions.*/would_dump(bprm, interpreter);retval = kernel_read(interpreter, 0, bprm->buf,    BINPRM_BUF_SIZE);if (retval != BINPRM_BUF_SIZE) {if (retval >= 0)retval = -EIO;goto out_free_dentry;}/* Get the exec headers */loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);break;}elf_ppnt++;}elf_ppnt = elf_phdata;for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)if (elf_ppnt->p_type == PT_GNU_STACK) {if (elf_ppnt->p_flags & PF_X)executable_stack = EXSTACK_ENABLE_X;elseexecutable_stack = EXSTACK_DISABLE_X;break;}/* Some simple consistency checks for the interpreter */if (elf_interpreter) {retval = -ELIBBAD;/* Not an ELF interpreter */if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)goto out_free_dentry;/* Verify the interpreter has a valid arch */if (!elf_check_arch(&loc->interp_elf_ex))goto out_free_dentry;}/* Flush all traces of the currently running executable */retval = flush_old_exec(bprm);if (retval)goto out_free_dentry;/* OK, This is the point of no return */current->mm->def_flags = def_flags;/* Do this immediately, since STACK_TOP as used in setup_arg_pages  may depend on the personality.  */SET_PERSONALITY(loc->elf_ex);   //executable_stack = EXSTACK_DISABLE_X;if (elf_read_implies_exec(loc->elf_ex, executable_stack))current->personality |= READ_IMPLIES_EXEC;if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)current->flags |= PF_RANDOMIZE;  /*current切换为bprm->filename,bprm->tcomm为进程名*/setup_new_exec(bprm);  /* Do this so that we can load the interpreter, if need be.  We will change some of these later */current->mm->free_area_cache = current->mm->mmap_base;current->mm->cached_hole_size = 0; //最终指定进程栈对应的vmaretval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),executable_stack);if (retval < 0) {send_sig(SIGKILL, current, 0);goto out_free_dentry;}current->mm->start_stack = bprm->p;/* Now we do a little grungy work by mmapping the ELF image into  the correct location in memory. */for(i = 0, elf_ppnt = elf_phdata;   i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {int elf_prot = 0, elf_flags;unsigned long k, vaddr;#ifndef gSysDebugInfoExec/*Program Headers:  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align  EXIDX          0x000000 0x00000000 0x00000000 0x00000 0x00000 R   0x4  PHDR           0x000034 0x00008034 0x00008034 0x00120 0x00120 R E 0x4  INTERP         0x000154 0x00008154 0x00008154 0x00019 0x00019 R   0x1      [Requesting program interpreter: /lib/ld-linux-armhf.so.3]  LOAD           0x000000 0x00008000 0x00008000 0xb22914 0xb22914 R E 0x8000  LOAD           0xb22914 0x00b32914 0x00b32914 0x16b4a0 0x3a22d0 RW  0x8000  DYNAMIC        0xb25df8 0x00b35df8 0x00b35df8 0x00178 0x00178 RW  0x4  NOTE           0x000170 0x00008170 0x00008170 0x00044 0x00044 R   0x4  TLS            0xb22914 0x00b32914 0x00b32914 0x00000 0x00004 R   0x4  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4*//* 此处可以打印出/usr/bin/snmp进程的所有程序段也可以通过readelf 命令读出program header*/#endif/*program header中LOAD表示的就是p_typep_type为PT_LOAD的段需要加载进内存*/if (elf_ppnt->p_type != PT_LOAD)continue;if (unlikely (elf_brk > elf_bss)) {unsigned long nbyte;/* There was a PT_LOAD segment with p_memsz > p_filesz  before this one. Map anonymous pages, if needed,  and clear the area.  */retval = set_brk(elf_bss + load_bias,elf_brk + load_bias);if (retval) {send_sig(SIGKILL, current, 0);goto out_free_dentry;}nbyte = ELF_PAGEOFFSET(elf_bss);if (nbyte) {nbyte = ELF_MIN_ALIGN - nbyte;if (nbyte > elf_brk - elf_bss)nbyte = elf_brk - elf_bss;if (clear_user((void __user *)elf_bss +load_bias, nbyte)) {/** This bss-zeroing can fail if the ELF* file specifies odd protections. So* we don't check the return value*/}}}if (elf_ppnt->p_flags & PF_R)elf_prot |= PROT_READ;if (elf_ppnt->p_flags & PF_W)elf_prot |= PROT_WRITE;if (elf_ppnt->p_flags & PF_X)elf_prot |= PROT_EXEC;elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;vaddr = elf_ppnt->p_vaddr;if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {elf_flags |= MAP_FIXED;} else if (loc->elf_ex.e_type == ET_DYN) {/* Try and get dynamic programs out of the way of the* default mmap base, as well as whatever program they* might try to exec.  This is because the brk will* follow the loader, and is not movable.  */#ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE/* Memory randomization might have been switched off* in runtime via sysctl or explicit setting of* personality flags.* If that is the case, retain the original non-zero* load_bias value in order to establish proper* non-randomized mappings.*/if (current->flags & PF_RANDOMIZE)load_bias = 0;elseload_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);#elseload_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);#endif}/*该函数增加vma;增加/proc/smaps的一个段*/error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, elf_prot, elf_flags, 0);if (BAD_ADDR(error)) {send_sig(SIGKILL, current, 0);retval = IS_ERR((void *)error) ?PTR_ERR((void*)error) : -EINVAL;goto out_free_dentry;}if (!load_addr_set) {load_addr_set = 1;load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);if (loc->elf_ex.e_type == ET_DYN) {load_bias += error -            ELF_PAGESTART(load_bias + vaddr);load_addr += load_bias;reloc_func_desc = load_bias;}}k = elf_ppnt->p_vaddr;if (k < start_code)start_code = k;if (start_data < k)start_data = k;/** Check to see if the section's size will overflow the* allowed task size. Note that p_filesz must always be* <= p_memsz so it is only necessary to check p_memsz.*/if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||   elf_ppnt->p_memsz > TASK_SIZE ||   TASK_SIZE - elf_ppnt->p_memsz < k) {/* set_brk can never work. Avoid overflows. */send_sig(SIGKILL, current, 0);retval = -EINVAL;goto out_free_dentry;}/*代码段:i=3:type=0x1;offset=0x0;vaddr=0x8000;paddr=0x8000; filesz=0xba81e0;memsz=0xba81e0;flags=0x5;align=0x8000数据段+程序段:i=4:type=0x1;offset=0xba81e0;vaddr=0xbb81e0;paddr=0xbb81e0;     filesz=0x7799a4;memsz=0x48f922c;flags=0x6;align=0x8000//elf_bss=0x1331b84,elf_brk=0x54b140c*/k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;if (k > elf_bss)elf_bss = k;if ((elf_ppnt->p_flags & PF_X) && end_code < k)end_code = k;if (end_data < k)end_data = k;k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;if (k > elf_brk)elf_brk = k;}loc->elf_ex.e_entry += load_bias;elf_bss += load_bias;elf_brk += load_bias;start_code += load_bias;end_code += load_bias;start_data += load_bias;end_data += load_bias;#ifndef gSysDebugInfoExec/*此时已经有3个vma;elf_bss=0x105b0,elf_brk=0x105b8;bias=0x0start_code=0x8000,end_code=0x8490;start_data=0x10490;end_data=0x105b0[00008000-00009000] ,0000018f 00000875 --代码段[00010000-00011000] ,0000038f 00100873 --数据段[7ecbb000-7ecdd000] ,0000038f 00100173 --进程的栈*/#endif /* Calling set_brk effectively mmaps the pages that we need* for the bss and break sections.  We must do this before* mapping in the interpreter, to make sure it doesn't wind* up getting placed where the bss needs to go.*/ /*  1 在此为bss段申请虚拟地址空间,注意此处的地址空间 为用户态进程的虚拟地址空间vm_brk,类似于malloc过程。 如果申请的虚拟地址空间即bss段大小 大于系统空闲的物理内存 则有可能申请失败,可以通过 echo 1 > /proc/sys/vm/overcommit_memory 去掉对内存大小的检测来规避失败的风险。2 并未真正分配物理内存3 set_brk后vma没有变化因为elf_bss,elf_brk在数据段区间 elf_bss=0x105b0,elf_brk=0x105b8;bias=0x0 start_code=0x8000,end_code=0x8490;start_data=0x10490;end_data=0x105b0 [00008000-00009000] ,0000018f 00000875 --代码段 [00010000-00011000] ,0000038f 00100873 --数据段 [7ecbb000-7ecdd000] ,0000038f 00100173 --进程的栈 */retval = set_brk(elf_bss, elf_brk);if (retval) {send_sig(SIGKILL, current, 0);goto out_free_dentry;}if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {send_sig(SIGSEGV, current, 0);retval = -EFAULT; /* Nobody gets to see this, but.. */goto out_free_dentry;}if (elf_interpreter) {unsigned long interp_map_addr = 0;elf_entry = load_elf_interp(&loc->interp_elf_ex,   interpreter,   &interp_map_addr,   load_bias);if (!IS_ERR((void *)elf_entry)) {/** load_elf_interp() returns relocation* adjustment*/interp_load_addr = elf_entry;elf_entry += loc->interp_elf_ex.e_entry;}if (BAD_ADDR(elf_entry)) {force_sig(SIGSEGV, current);retval = IS_ERR((void *)elf_entry) ?(int)elf_entry : -EINVAL;goto out_free_dentry;}reloc_func_desc = interp_load_addr;allow_write_access(interpreter);fput(interpreter);kfree(elf_interpreter);} else {elf_entry = loc->elf_ex.e_entry;if (BAD_ADDR(elf_entry)) {force_sig(SIGSEGV, current);retval = -EINVAL;goto out_free_dentry;}}kfree(elf_phdata);set_binfmt(&elf_format);#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGESretval = arch_setup_additional_pages(bprm, !!elf_interpreter);if (retval < 0) {send_sig(SIGKILL, current, 0);goto out;}#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */install_exec_creds(bprm);retval = create_elf_tables(bprm, &loc->elf_ex, load_addr, interp_load_addr);if (retval < 0) {send_sig(SIGKILL, current, 0);goto out;}/* N.B. passed_fileno might not be initialized? */current->mm->end_code = end_code;current->mm->start_code = start_code;current->mm->start_data = start_data;current->mm->end_data = end_data;current->mm->start_stack = bprm->p;#ifdef arch_randomize_brkif ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {current->mm->brk = current->mm->start_brk =arch_randomize_brk(current->mm);#ifdef CONFIG_COMPAT_BRKcurrent->brk_randomized = 1;#endif}#endifif (current->personality & MMAP_PAGE_ZERO) {/* Why this, you ask???  Well SVr4 maps page 0 as read-only,  and some applications "depend" upon this behavior.  Since we do not have the power to recompile these, we  emulate the SVr4 behavior. Sigh. */error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,MAP_FIXED | MAP_PRIVATE, 0);}#ifdef ELF_PLAT_INIT/** The ABI may specify that certain registers be set up in special* ways (on i386 %edx is the address of a DT_FINI function, for* example.  In addition, it may also specify (eg, PowerPC64 ELF)* that the e_entry field is the address of the function descriptor* for the startup routine, rather than the address of the startup* routine itself.  This macro performs whatever initialization to* the regs structure is required as well as any relocations to the* function descriptor entries when executing dynamically links apps.*/ELF_PLAT_INIT(regs, reloc_func_desc);#endif/* 可执行程序从elf_entry开始运行,exec返回时pc=elf_entry出栈 */start_thread(regs, elf_entry, bprm->p);    retval = 0;out:kfree(loc);out_ret:return retval;/* error cleanup */out_free_dentry:allow_write_access(interpreter);if (interpreter)fput(interpreter);out_free_interp:kfree(elf_interpreter);out_free_ph:kfree(elf_phdata);goto out;}
总结:

此处要重点区分理解 ELF header和programheader的概念。

1>ELF头描述整个程序的信息。

Praogramheader:每个程序段(比如代码段、bss段、数据段等)都有一个这样的头部信息,用来描述这个程序段在文件中的大小,位置 以及放到内存上的大小和位置信息。

程序段的头部信息,保存在文件的e_phoff处,且程序段个数为e_phnum个,如例子中为9个;

2>加载可执行的elf文件。do_execve_common->search_binary_handler

/*

load elf load_binary=load_elf_binary->arch_setup_additional_pages

->install_special_mapping->insert_vm_struct插入虚拟内存区,即进程地址空间.

*/

search_binary_handler(bprm)->(*fn)(struct linux_binprm *) = fmt->load_binary;

3> 加载程序program段,load_elf_binary:

1) setup_new_exec(bprm);切换当前进程为bprm->filename程序。

->   __set_task_comm(current,kbasename(bprm->filename), true);

设置进程名称、current信息,以便切换时current即为bprm->filename程序。

注意此时当前进程current被替换掉了。

2) elf_map函数增加vma;增加/proc/smaps的一个段

error = elf_map(bprm->file, load_bias +vaddr, elf_ppnt, elf_prot, elf_flags, 0);

3) 系统在load_elf_binary获取程序段头部信息,并进行校验。

4> creds设置:

1) prepare_exec_creds会准备bprm->cred,日后install_exec_creds设置给当前进程。

2)setup_new_exec在install_exec_creds之前会比较bprm->cred,current->cred等

3)install_exec_creds(bprm);中安装bprm->cred到当前进程的creds

之后bprm->cred = NULL;

在install_exec_creds中要比较current->cred和current->real_cred,

可以考虑cred与real_cred设置成相同。

开放平台的方案是在install_exec_creds->security_bprm_committing_creds(bprm);

阶段将用户id和组id改变,之前阶段cred和real_cred都是0.

【实例】

举例:一个进程的ELF header 和program header和section header

ps:可执行文件和动态库各自分别有自己的头部信息;

#readelf –a sonia > sonia

ELF Header:

 Magic:   7f 45 4c 46 01 01 01 0000 00 00 00 00 00 00 00 Class:                            ELF32 Data:                             2's complement, little endian Version:                          1 (current) OS/ABI:                           UNIX - System V  ABIVersion:                       0 Type:                             EXEC (Executable file) Machine:                          ARM Version:                          0x1 Entry point address:              0x32cfd Start of program headers:         52 (bytes into file) Start of section headers:         20061364 (bytes into file) Flags:                            0x5000402, has entry point, Version5 EABI, <unknown> Size of this header:              52 (bytes) Size of program headers:          32 (bytes) Number of program headers:        9 Size of section headers:          40 (bytes) Number of section headers:        28 Section header string table index: 27

Section Headers: [25]bss段即未初始化全局变量和静态变量保存地;查找对应代码段和bss段地址需要参考这个头信息;

 [Nr] Name              Type            Addr     Off   Size   ES Flg Lk Inf Al  [0]                   NULL            00000000 000000 000000 00      0  0  0  [1] .interp           PROGBITS        00008154 000154 000019 00   A 0   0  1  [2] .note.ABI-tag     NOTE            00008170 000170 000020 00   A 0   0  4  [3] .note.gnu.build-i NOTE           00008190 000190 000024 00   A 0   0  4  [4] .hash             HASH            000081b4 0001b4 00245c 04   A 5   0  4  [5] .dynsym           DYNSYM          0000a610 002610 0050e0 10   A 6   1  4  [6] .dynstr           STRTAB          0000f6f0 0076f0 006ea4 00   A 0   0  1  [7] .gnu.version      VERSYM          00016594 00e594 000a1c 02   A 5   0  2  [8] .gnu.version_r    VERNEED         00016fb0 00efb0 000180 00   A 6   8  4  [9] .rel.dyn          REL             00017130 00f130 0001a0 08   A 5   0  4 [10] .rel.plt          REL             000172d0 00f2d0 0015e0 08   A 5  12  4 [11] .init            PROGBITS        000188b0 0108b000000c 00  AX  0  0  4 [12] .plt             PROGBITS        000188bc 0108bc002300 04  AX  0  0  4 [13] .text             PROGBITS        0001ac00 012c00 822c18 00  AX 0   0 256 [14] .fini            PROGBITS        0083d818 835818000008 00  AX  0  0  4 [15] .rodata          PROGBITS        0083d820 8358202b36d8 00   A  0  0  8 [16] .eh_frame        PROGBITS        00bb01dc ba81dc 000004 00   A 0   0  4 [17] .tbss             NOBITS          00bb81e0 ba81e0 000004 00 WAT  0  0  4 [18] .init_array      INIT_ARRAY      00bb81e0 ba81e0000b0c 00  WA  0  0  4 [19] .fini_array      FINI_ARRAY      00bb8cec ba8cec000004 00  WA  0  0  4 [20] .jcr             PROGBITS        00bb8cf0 ba8cf0000004 00  WA  0  0  4 [21] .data.rel.ro     PROGBITS        00bb8cf8 ba8cf8002a00 00  WA  0  0  8 [22] .dynamic         DYNAMIC         00bbb6f8 bab6f8000178 08  WA  6  0  4 [23] .got             PROGBITS        00bbb870 bab8700012e0 04  WA  0  0  4 [24] .data            PROGBITS        00bbcb50 bacb50775034 00  WA  0  0  8 [25] .bss              NOBITS          01331b88 1321b84 417f884 00  WA 0   0  8 [26] .ARM.attributes  ARM_ATTRIBUTES  00000000 1321b84000039 00      0   0  1 [27] .shstrtab         STRTAB          00000000 1321bbd 0000f5 00      0  0  1Key to Flags:  W(write), A (alloc), X (execute), M (merge), S (strings)  I(info), L (link order), G (group), T (TLS), E (exclude), x (unknown)  O(extra OS processing required) o (OS specific), p (processor specific)
There are no section groups in this file.

Program Headers: 注意LOAD表示需要加载入内存的程序段

 Type           Offset   VirtAddr  PhysAddr   FileSiz MemSiz  Flg Align

 EXIDX          0x000000 0x000000000x00000000 0x00000 0x00000 R   0x4

 PHDR           0x000034 0x000080340x00008034 0x00120 0x00120 R E 0x4

 INTERP         0x000154 0x000081540x00008154 0x00019 0x00019 R   0x1

     [Requesting program interpreter: /lib/ld-linux-armhf.so.3]

 LOAD           0x000000 0x000080000x00008000 0xba81e0 0xba81e0 R E 0x8000 

                    ->.hash + .rodata等等需要加载进内存的段;load_elf_binary是需要申请内存,存放这些段;

动态库加载和可执行文件执行时都需要对应的加载;

 LOAD           0xba81e0 0x00bb81e0 0x00bb81e0 0x7799a4  0x48f922c RW 0x8000

                    ->.data数据段+.bss段+.got段等等段的大小:0x48f922c-0x7799a4=417F888

 DYNAMIC        0xbab6f8 0x00bbb6f80x00bbb6f8 0x00178 0x00178 RW  0x4

 NOTE           0x000170 0x000081700x00008170 0x00044 0x00044 R   0x4

 TLS            0xba81e0 0x00bb81e00x00bb81e0 0x00000 0x00004 R   0x4

 GNU_STACK      0x000000 0x000000000x00000000 0x00000 0x00000 RWE 0x4-此段会决定栈的空间。

#/home/snmpd &

第一次为用户进程分配栈空间 do_execve_common->__bprm_mm_init

  并把栈空间VMA插入进程的地址空间中。

1) 初始化过程指定程序栈的空间为vm_start:7efff000;vm_end:0x7f000000

[0x7efff000,0x7f000000],此处的栈不是当前进程的,是

bprm->filename=/usr/bin/snmp的。

2) 之后我们还会有对栈的空间所调整

3) 因为用户态进程共享用户态虚拟地址空间,所以每个进程的栈顶地址都是这个0x7efff000

~__bprm_mm_init:current:sh;filename:/home/snmpd;vm_start:7efff000;vm_end:0x7f000000

[7efff000-7f000000],0000038f 00118173

 Elf头和程序头

type=0x2;phoff=0x34;flags=0x5000002;phnum=0x8;

type=0x200;phoff=0xfe;flags=0x0;phnum=0x1061;

lf_interpreter:/lib/ld-linux-armhf.so.3;bprm->filename:/home/snmpd

load_elf_binary-913current:sh;bprm->filename is /home/snmpd bprm->tcomm=snmpd

current->top_stack=0x7effff91

进程地址空间的栈区间调整之前

[7effe000-7f000000],0000038f 00118173

调整栈空间的大小setup_arg_pages,调整后为[7ea7a000-7ea9c000]

do_execve_common->search_binary_handler-> load_elf_binary->setup_arg_pages

stack_top=0x7ea9c000;mmap_min_addr=4096

6i=0:6type=0x70000001;offset=0x484;vaddr=0x8484;paddr=0x8484;filesz=0x8;memsz=0x8;flags=0x4;align=0x4

6i=1:6type=0x6;offset=0x34;vaddr=0x8034;paddr=0x8034;filesz=0x100;memsz=0x100;flags=0x5;align=0x4

6i=2:6type=0x3;offset=0x134;vaddr=0x8134;paddr=0x8134;filesz=0x19;memsz=0x19;flags=0x4;align=0x1

6i=3:6type=0x1;offset=0x0;vaddr=0x8000;paddr=0x8000;filesz=0x490;memsz=0x490;flags=0x5;align=0x8000

6load_elf_binary-1039i=3 current:snmpd;bprm->filename is /home/snmpd,e_type:2,p_type:1

进程地址空间增加代码段之前,栈空间调整之后的栈为如下区间:

[7ea7a000-7ea9c000] ,0000038f 00100173 –调整后的栈

进程地址空间中增加代码段elf_map,调整后为[00008000-00009000]

do_execve_common->search_binary_handler-> load_elf_binary-> elf_map

elf_map-342

 current:snmpd;addr:0x8000;size:0x1000;p_filesz:0x490;p_offset:0x0;p_vaddr:0x8000

load_elf_binary-1058current:snmpd;bprm->filename is /home/snmpd

[00008000-00009000],0000018f 00000875—代码段

[7ea7a000-7ea9c000],0000038f 00100173 –栈

6i=4:6type=0x1;offset=0x490;vaddr=0x10490;paddr=0x10490;filesz=0x120;memsz=0x128;flags=0x6;align=0x8000

进程地址空间增加数据段之前

6load_elf_binary-1039i=4 current:snmpd;bprm->filename is /home/snmpd,e_type:2,p_type:1

[00008000-00009000],0000018f 00000875 – 代码段

[7ea7a000-7ea9c000],0000038f 00100173 –栈

进程地址空间中增加程序段elf_map,调整后为[00010000-00011000]

do_execve_common->search_binary_handler-> load_elf_binary-> elf_map

elf_map-342current:snmpd;addr:0x10000;size:0x1000;p_filesz:0x120;p_offset:0x490;p_vaddr:0x10490

6load_elf_binary-1058current:snmpd;bprm->filename is /home/snmpd

[00008000-00009000],0000018f 00000875 –代码段

[00010000-00011000],0000038f 00100873 –数据段

[7ea7a000-7ea9c000],0000038f 00100173—栈

6i=5:6type=0x2;offset=0x49c;vaddr=0x1049c;paddr=0x1049c;filesz=0xe8;memsz=0xe8;flags=0x6;align=0x4

6i=6:6type=0x4;offset=0x150;vaddr=0x8150;paddr=0x8150;filesz=0x44;memsz=0x44;flags=0x4;align=0x4

6i=7:6type=0x6474e551;offset=0x0;vaddr=0x0;paddr=0x0;filesz=0x0;memsz=0x0;flags=0x6;align=0x4

进程地址空间中增加bss之前

load_elf_binary-1136current:snmpd;bprm->filename is/home/snmpd,elf_bss=0x105b0,elf_brk=0x105b8;bias=0x0

6start_code=0x8000,end_code=0x8490;start_data=0x10490;end_data=0x105b0

[00008000-00009000],0000018f 00000875

[00010000-00011000],0000038f 00100873

[7ea7a000-7ea9c000],0000038f 00100173

进程地址空间中增加bssset_brk,调整后为[00010000-00011000]

do_execve_common->search_binary_handler-> load_elf_binary-> set_brk

注意bss段增加之后,程序段并没有变化,因为bss段在data段的区间内

load_elf_binary-1168current:snmpd;bprm->filename is /home/snmpd

[00008000-00009000],0000018f 00000875

[00010000-00011000],0000038f 00100873

[7ea7a000-7ea9c000],0000038f 00100173

进程地址空间中增加其余段load_elf_interp,调整后为

do_execve_common->search_binary_handler-> load_elf_binary-> load_elf_interp

6elf_map-342current:snmpd;addr:0x0 ;size:0x1a000;p_filesz:0x19308;p_offset:0x0;p_vaddr:0x0

6elf_map-342current:snmpd;addr:0x76f24000;size:0x2000;p_filesz:0xb50;p_offset:0x19d38;p_vaddr:0x21d38

分析对比smaps

6load_elf_binary-1226current:snmpd;bprm->filename is /home/snmpd

[00008000-00009000],0000018f 00000875 –代码段

[00010000-00011000],0000038f 00100873 –数据段/bss段

[76f03000-76f1d000],0000018f 00000875

[76f23000-76f24000],0000018f 00040075

[76f24000-76f26000],0000038f 00100873

[7ea7a000-7ea9c000],0000038f 00100173 –栈

[00008000-00009000],0000018f 00000875

[00010000-00011000],0000038f 00100873

[76f03000-76f1d000],0000018f 00000875

[76f23000-76f24000],0000018f 00040075

[76f24000-76f26000],0000038f 00100873

[7ea7a000-7ea9c000],0000038f 00100173

buf=0x103d008

以上分析对比smaps

#cat /proc/239/smaps

00008000-00009000r-xp 00000000 00:0e 23330821  /home/snmpd -代码段Size:                  4 kBRss:                   4 kBPss:                   4 kBShared_Clean:          0 kBShared_Dirty:          0 kBPrivate_Clean:         4 kBPrivate_Dirty:         0 kBReferenced:            4 kBAnonymous:             0 kBAnonHugePages:         0 kBSwap:                  0 kBKernelPageSize:        4 kBMMUPageSize:           4 kBLocked:                0 kBVmFlags:rd ex mr mw me dw00010000-00011000rw-p 00000000 00:0e 23330821  /home/snmpd–数据段/bss段Size:                  4 kBRss:                   4 kBPss:                   4 kBShared_Clean:          0 kBShared_Dirty:          0 kBPrivate_Clean:         0 kBPrivate_Dirty:         4 kBReferenced:            4 kBAnonymous:             4 kBAnonHugePages:         0 kBSwap:                  0 kBKernelPageSize:        4 kBMMUPageSize:           4 kBLocked:                0 kBVmFlags:rd wr mr mw me dw ac0103d000-01060000rw-p 00000000 00:00 0          [heap]Size:                140 kBRss:                   8 kBPss:                   8 kBShared_Clean:          0 kBShared_Dirty:          0 kBPrivate_Clean:         0 kBPrivate_Dirty:         8 kBReferenced:            8 kBAnonymous:             8 kBAnonHugePages:         0 kBSwap:                  0 kBKernelPageSize:        4 kBMMUPageSize:           4 kBLocked:                0 kBVmFlags:rd wr mr mw me ac76dff000-76ef6000r-xp 00000000 1f:05 154       /lib/libc-2.19-2014.06.soSize:                988 kBRss:                 236 kBPss:                  34 kBShared_Clean:        236 kBShared_Dirty:          0 kBPrivate_Clean:         0 kBPrivate_Dirty:         0 kBReferenced:          236 kBAnonymous:             0 kBAnonHugePages:         0 kBSwap:                  0 kBKernelPageSize:        4 kBMMUPageSize:           4 kBLocked:                0 kBVmFlags:rd ex mr mw me
【动态库加载】

对于同一个动态库来说,不同进程中的vma区间不同,但对应相同的文件页,所以一旦动态库被一个进程加载到了内存中,其他进程不用再次从flash上加载,也就是说这个动态库是共享的.

不同进程中同一动态库对应的虚拟地址虽然不同,但动态库加载进内存的物理偏移地址是相同的.当进程访问动态库中的一个函数时,这个函数的地址如果未经过分页映射,即有可能初次访问,则触发缺页异常,文件页的缺页异常处理流程会根据这个函数在动态库中的偏移地址(即时不同进程,这个偏移地址也是相同的)找到对应文件页,并判断是否需要从flash中读数据到该文件页.

1 加载动态库的系统调用:sys_userlib->load_shlib=load_elf_library

2 查找动态库的bss段信息:binfmt_elf.c:

/*file表示动态库文件;shdata输出变量,区section头部信息*/

int load_elf_library_section(struct file *file,struct elf_shdr *shdata){struct elf_shdr *elf_shdata;struct elf_shdr *eppnt;unsigned long elf_bss,bss,len;int retval,error,i,j;struct elfhdr elf_ex;/*读取elf头*/retval = kernel_read(file,0,(char *)&elf_ex,sizeof(elf_ex));/*所有section头的总大小*/j =sizeof(struct elf_shdr)*elf_ex.e_shnum;elf_shdata = kmalloc(j,GFP_KERNEL);eppnt = elf_shdata;/*读取section header*/retval = kernel_read(file,elf_ex.e_shoff,(char *)eppnt,j);for(j=0,i=0;i<elf_ex.e_shnum;i++){if(SH_NOBITS==eppnt->sh_type){printk("bss section:\n");memcpy(shdata,eppnt,sizeof(struct elf_shdr));}dump_elf_shdr(eppnt);//打印section头部信息eppnt++;}kfree(elf_shdata);return error;}

filemap_fault()文件页缺页异常处理中可以根据动态库的名称,导出动态库的指定段信息(如bss、data段等) .

3 动态库加载过程:

1>可以通过命令:

#strace ls  --查看动态库加载过程,一般流程open(".so")->mmap();

2>文件页缺页异常中真正从flash上获取动态库内容:filemap_fault;

3>具体过程可以参考如下博文:

linux文件读取过程:http://blog.csdn.net/eleven_xiy/article/details/73609237

linux内存回收机制:http://blog.csdn.net/eleven_xiy/article/details/75195490;

4 动态库链接过程举例

4.1 基本信息

程序名:debug;连接动态库:libdebug.so;

窗口终端环境变量:

#export

export HOME='/'

export PATH='/sbin:/usr/sbin:/bin:/usr/bin'

export PWD='/'

执行过程:./debug sh进程中执行execve(debug);

execve返回时debug进程开始执行;

debug进程首先链接动态库,默认尝试路径open(/lib/libdebug.so);open(/usr/lib/libdebug.so);

如果配置export LD_LIBRARY_PATH='/mnt/mtd' 

则尝试open(/mnt/mtd/libdebug.so);open(/lib/libdebug.so);open(/usr/lib/libdebug.so);

debug进程执行main入口函数;

telnet终端环境变量,遵循/etc/profile中配置:

export HOME='/'

export LD_LIBRARY_PATH='/usr/local/lib:/usr/lib:/mnt/mtd/'

export PATH='/sbin:/usr/sbin:/bin:/usr/bin'

export PWD='/'

可执行程序链接动态库是在elf程序exec执行之后,main入口函数执行之前;

编译过程指定链接路径为:/lib;/usr/lib + LD_LIBRARY_PATH;

可执行文件中定位动态库中符号: GOT和PLT原理简析

指定可执行程序的动态库链接路径:

envp=" LD_LIBRARY_PATH=/mnt/mtd"

execve("./debug",NULL,envp);

【总结】

本文介绍了可执行文件和动态库加载过程,举例说明了ELF 文件的elf头,程序头(program header)和section header. 值得注意的是 :

1 程序头中的LOAD(PT_LOAD)段,是需要加载进内存的,且load_elf_binary/load_elf_library过程都需要加载,这个段中不只包含data和bss段,

可以通过readelf -a查看Section to Segment mapping中表明了LOAD包含的段;

2 section header中真正指明了程序的数据段、bss段(SH_NOBITS).

3 ELF程序执行过程中,读取ELF各头部信息,并逐步替换掉当前进程(包括进程名,进程地址空间等),最后切换到ELF程序执行.

当前进程不需要主动退出,就切换到ELF程序中,因为当前进程所有信息都被ELF替换掉了.