JavaSE 集合框架(9)- ConcurrentHashMap

来源:互联网 发布:南京水科院怎么样知乎 编辑:程序博客网 时间:2024/06/07 01:51

在并发编程中使用HashMap可能导致程序死循环。而使用线程安全的HashTable效率又非 常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。
(1)线程不安全的HashMap
在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所 以在并发情况下不能使用HashMap。例如,执行以下代码会引起死循环。

final HashMap<String, String> map = new HashMap<String, String>(2);    Thread t = new Thread(new Runnable() {             @Override               public void run() {                      for (int i = 0; i < 10000; i++) {                                new Thread(new Runnable() {                                        @Override                 public void run() {                map.put(UUID.randomUUID().toString(), "");                }                }, "ftf" + i).start();            }     }}, "ftf");t.start();t.join();

HashMap在并发执行put操作时会引起死循环,是因为多线程会导致HashMap的Entry链表 形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry.
(2)效率低下的HashTable
HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable 的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同 步方法时,会进入阻塞或轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。
(3)ConcurrentHashMap的锁分段技术可有效提升并发访问率
HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并 发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。


ConcurrentHashMap的结构

通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的hash table,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。
ConcurrentHashMap和Hashtable主要区别就是围绕着锁的粒度以及如何锁,可以简单理解成把一个大的HashTable分解成多个,形成了锁分离。如图:
这里写图片描述
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重 入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数 据。一个ConcurrentHashMap里包含一个Segment数组。Segment的结构和HashMap类似,是一种 数组和链表结构。一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元 素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时, 必须首先获得与它对应的Segment锁.


Get操作

Segment的get操作实现非常简单和高效。先经过一次再散列,然后使用这个散列值通过散 列运算定位到Segment,再通过散列算法定位到元素,代码如下。

public V get(Object key) {    int hash = hash(key.hashCode());    return segmentFor(hash).get(key, hash);}

get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空才会加锁重读。我们 知道HashTable容器的get方法是需要加锁的,那么ConcurrentHashMap的get操作是如何做到不 加锁的呢?原因是它的get方法里将要使用的共享变量都定义成volatile类型,如用于统计当前 Segement大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写 (有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写 共享变量count和value,所以可以不用加锁。之所以不会读到过期的值,是因为根据Java内存模 型的happen before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取 volatile变量,get操作也能拿到最新的值,这是用volatile替换锁的经典应用场景。


Put操作

由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必 须加锁。put方法首先定位到Segment,然后在Segment里进行插入操作。插入操作需要经历两个 步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位 置,然后将其放在HashEntry数组里。
(1)是否需要扩容
在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈 值,则对数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容 之后没有新元素插入,这时HashMap就进行了一次无效的扩容。
(2)如何扩容
在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进 行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只 对某个segment进行扩容。

场景:线程A和线程B同时执行相同Segment对象的put方法

1、线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
2、线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
3、当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行;


Size操作

 如果要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小 后求和。Segment里的全局变量count是一个volatile变量,那么在多线程场景下,是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小了呢?不是的,虽然相加时 可以获取每个Segment的count的最新值,但是可能累加前使用的count发生了变化,那么统计结 果就不准了。所以,最安全的做法是在统计size的时候把所有Segment的put、remove和clean方法全部锁住,但是这种做法显然非常低效。
 因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以ConcurrentHashMap的做法是先尝试2次通过不锁住Segment的方式来统计各个Segment大小,如果统计的过程中,容器的count发生了变化,则再采用加锁的方式来统计所有Segment的大小。
 那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount 变量,在put、remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size 前后比较modCount是否发生变化,从而得知容器的大小是否发生变化。
代码实现

try {    for (;;) {        if (retries++ == RETRIES_BEFORE_LOCK) {            for (int j = 0; j < segments.length; ++j)                ensureSegment(j).lock(); // force creation        }        sum = 0L;        size = 0;        overflow = false;        for (int j = 0; j < segments.length; ++j) {            Segment<K,V> seg = segmentAt(segments, j);            if (seg != null) {                sum += seg.modCount;                int c = seg.count;                if (c < 0 || (size += c) < 0)                    overflow = true;            }        }        if (sum == last)            break;        last = sum;    }} finally {    if (retries > RETRIES_BEFORE_LOCK) {        for (int j = 0; j < segments.length; ++j)            segmentAt(segments, j).unlock();    }}