BiLSTM+CRF 在 NER方面的应用

来源:互联网 发布:java 邮件发送多人 编辑:程序博客网 时间:2024/05/29 09:55

RNN简介

  RNNs的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。
RNNs之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNNs能够对任何长度的序列数据进行处理。但是在实践中,为了降低复杂性往往假设当前的状态只与前面的几个状态相关,下图便是一个典型的RNNs:
这里写图片描述

RNNs包含输入单元(Input units),输入集标记为 {x 0 ,x 1 ,…,x t ,x t+1 ,…} ,而输出单元(Output units)的输出集则被标记为 {y 0 ,y 1 ,…,y t ,y t+1 .,..} 。RNNs还包含隐藏单元(Hidden units),我们将其输出集标记为 {s 0 ,s 1 ,…,s t ,s t+1 ,…} ,这些隐藏单元完成了最为主要的工作。你会发现,在图中:有一条单向流动的信息流是从输入单元到达隐藏单元的,与此同时另一条单向流动的信息流从隐藏单元到达输出单元。在某些情况下,RNNs会打破后者的限制,引导信息从输出单元返回隐藏单元,这些被称为“Back Projections”,并且隐藏层的输入还包括上一隐藏层的状态,即隐藏层内的节点可以自连也可以互连。
  上图将循环神经网络进行展开成一个全神经网络。例如,对一个包含5个单词的语句,那么展开的网络便是一个五层的神经网络,每一层代表一个单词。对于该网络的计算过程如下:

x t 表示第 t,t=1,2,3… 步(step)的输入。比如, x 1 为第二个词的one-hot向量(根据上图, x 0 为第一个词);
PS:使用计算机对自然语言进行处理,便需要将自然语言处理成为机器能够识别的符号,加上在机器学习过程中,需要将其进行数值化。而词是自然语言理解与处理的基础,因此需要对词进行数值化,词向量便是一种可行又有效的方法。何为词向量,即使用一个指定长度的实数向量v来表示一个词。有一种种最简单的表示方法,就是使用One-hot vector表示单词,即根据单词的数量|V|生成一个|V| * 1的向量,当某一位为一的时候其他位都为零,然后这个向量就代表一个单词。

最不能忍受的一点便是很难计算单词之间的相似性。
现在有一种更加有效的词向量模式,该模式是通过神经网或者深度学习对词进行训练,输出一个指定维度的向量,该向量便是输入词的表达。如word2vec。
s t 为隐藏层的第 t 步的状态,它是网络的记忆单元。 s t 根据当前输入层的输出与上一步隐藏层的状态进行计算。 s t =f (U x t +W s t−1 ) ,其中 f 一般是非线性的激活函数,如tanh或ReLU,在计算 s 0 时,即第一个单词的隐藏层状态,需要用到 s −1 ,但是其并不存在,在实现中一般置为0向量;
o t 是第 t 步的输出,如下个单词的向量表示, o t =sof tmax(V s t ) .
需要注意的是:
你可以认为隐藏层状态 s t 是网络的记忆单元. s t 包含了前面所有步的隐藏层状态。而输出层的输出 o t 只与当前步的 s t 有关,在实践中,为了降低网络的复杂度,往往 s t 只包含前面若干步而不是所有步的隐藏层状态;
在传统神经网络中,每一个网络层的参数是不共享的。而在RNNs中,每输入一步,每一层各自都共享参数 U ,V ,W 。其反应者RNNs中的每一步都在做相同的事,只是输入不同,因此大大地降低了网络中需要学习的参数;这里并没有说清楚,解释一下,传统神经网络的参数是不共享的,并不是表示对于每个输入有不同的参数,而是将RNN是进行展开,这样变成了多层的网络,如果这是一个多层的传统神经网络,那么 x t 到 s t 之间的U矩阵与 x t+1 到 s t+1 之间的 U 是不同的,而RNNs中的却是一样的,同理对于 s 与 s 层之间的 W 、 s 层与 o 层之间的 V 也是一样的。
上图中每一步都会有输出,但是每一步都要有输出并不是必须的。比如,我们需要预测一条语句所表达的情绪,我们仅仅需要关系最后一个单词输入后的输出,而不需要知道每个单词输入后的输出。同理,每步都需要输入也不是必须的。RNNs的关键之处在于隐藏层,隐藏层能够捕捉序列的信息。

RNNs能干什么?

  RNNs已经被在实践中证明对NLP是非常成功的。如分词,词向量表达、语句合法性检查、词性标注,命名实体识别等。在RNNs中,目前使用最广泛最成功的模型便是LSTMs(Long Short-Term Memory,长短时记忆模型)模型,该模型通常比vanilla RNNs能够更好地对长短时依赖进行表达,该模型相对于一般的RNNs,只是在隐藏层做了手脚。对于LSTMs,后面会进行详细地介绍。下面对RNNs在NLP中的应用进行简单的介绍。

LSTM(Long-Short Term Memory)

   原生的RNN会遇到一个很大的问题,叫做 The vanishing gradient problem for RNNs,也就是后面时间的节点对于前面时间的节点感知力下降,解决这个问题的方法就是用一个Cell单元来记录相关的信息。   LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。

这里写图片描述
LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。
这里写图片描述

LSTM 的核心思想


LSTM 的关键就是细胞状态,水平线在图上方贯穿运行。
细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。
这里写图片描述
LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。
这里写图片描述
Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”!

LSTM 拥有三个门,来保护和控制细胞状态。
在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取 h_{t-1} 和 x_t,输出一个在 0 到 1 之间的数值给每个在细胞状态 C_{t-1} 中的数字。1 表示“完全保留”,0 表示“完全舍弃”。让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前 主语 的类别,因此正确的 代词 可以被选择出来。当我们看到新的 代词 ,我们希望忘记旧的 代词 。
这里写图片描述
下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一,sigmoid 层称 “输入门层” 决定什么值我们将要更新。然后,一个 tanh 层创建一个新的候选值向量,\tilde{C}_t,会被加入到状态中。下一步,我们会讲这两个信息来产生对状态的更新。
在我们语言模型的例子中,我们希望增加新的主语的性别到细胞状态中,来替代旧的需要忘记的主语。
这里写图片描述
现在是更新旧细胞状态的时间了,C_{t-1} 更新为 C_t。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。
我们把旧状态与 f_t 相乘,丢弃掉我们确定需要丢弃的信息。接着加上 i_t * \tilde{C}_t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。
在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的性别信息并添加新的信息的地方。
这里写图片描述

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。
在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。
这里写图片描述

小结


Bi LSTM是LSTM的改进版,LSTM是RNN的改进版。
RNN的意思是,为了预测最后的结果,我先用第一个词预测,当然,只用第一个预测的预测结果肯定不精确,我把这个结果作为特征,跟第二词一起,来预测结果;接着,我用这个新的预测结果结合第三词,来作新的预测;然后重复这个过程;直到最后一个词。这样,如果输入有n个词,那么我们事实上对结果作了n次预测,给出了n个预测序列。整个过程中,模型共享一组参数。因此,RNN降低了模型的参数数目,防止了过拟合,因此,特别适合处理序列问题。
LSTM对RNN做了改进,使得能够捕捉更长距离的信息。但是不管是LSTM还是RNN,都有一个问题,它是从左往右推进的,因此后面的词会比前面的词更重要,但是对于分词和NER,以及POS Tag这些任务来说是不妥的,因为句子各个字应该是平权的。因此出现了双向LSTM,它从左到右做一次LSTM,然后从右到左做一次LSTM,然后把两次结果组合起来。
关于应用,这里我就不贴代码了,git上应该有不少算法的Model供大家学习。其实,我想说的是一种关于方法论的方法。这里给一个识别的结果吧,我用京东商品信息作为的训练语料进行training并在上面进行了测试,结果如下:
这里写图片描述