贝叶斯相关(整理)

来源:互联网 发布:菜鸟网络会员干什么的 编辑:程序博客网 时间:2024/05/17 01:13

----贝叶斯理论----

在古代,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,不是1/2,就是0,而且不论你取了多少次,取得白球的概率θ始终都是1/2,即不随观察结果X的变化而变化。这种频率派的观点长期统治着人们的观念,直到后来一个名叫Thomas Bayes的人物出现。

贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。

举个例子来理解这种机遇的成分:一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白非0即1”的思考方式,便是贝叶斯式的思考方式。贝叶斯及贝叶斯派提出了一个思考问题的固定模式:
先验概率 + 样本信息 = 后验概率

上述思考模式意味着,新观察到的样本信息将修正人们以前对事物的认知。换言之,在得到新的样本信息之前,人们对样本a的认知是先验分布p(a),在得到新的样本信息b后,人们对的认知为p(a|b)。其中,先验信息一般来源于经验跟历史资料。而后验分布p(a|b)一般也认为是在给定样本b的情况下的条件分布,而使p(a|b)达到最大的值maxarg(p(b|a))称为最大后验估计,类似于经典统计学中的极大似然估计。综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断是观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。

----贝叶斯定理----

>> 条件概率就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。

>> 联合概率表示两个事件共同发生的概率。AB的联合概率表示为p(A∩B)

>> 边缘概率(又称先验概率)是某个事件发生的概率。

接下来,考虑:

>>  事件B发生之前,我们对事件A的发生有一个基本的概率判断,称为A的先验概率,用P(A)表示

>>  事件B发生之后,我们对事件A的发生概率重新评估,称为A的后验概率,用P(A|B)表示

类似的:

>>  事件A发生之前,我们对事件B的发生有一个基本的概率判断,称为B的先验概率,用P(B)表示

>>  事件A发生之后,我们对事件B的发生概率重新评估,称为B的后验概率,用P(B|A)表示

则贝叶斯公式为:


举个例子来说明贝叶斯定理的用途:经常在网上搜索东西的朋友知道,当你不小心输入一个不存在的单词时,搜索引擎会提示你是不是要输入某一个正确的单词,比如当你输入“Julw”时,系统会提示你是不是要搜索“July”。这叫做拼写检查。根据谷歌一员工写的文章显示,Google的拼写检查基于贝叶斯方法。下面我们就来看看,怎么利用贝叶斯方法,实现"拼写检查"的功能。

用户输入一个单词时,可能拼写正确,也可能拼写错误。如果把拼写正确的情况记做c(correct),拼写错误的情况记做w(wrong),那么"拼写检查"要做的事情就是:在发生w的情况下,试图推断出c。换言之:已知w,然后在若干个备选方案中,找出可能性最大的那个c,也就是求的最大值。而根据贝叶斯定理,有:


由于对于所有备选的c来说,对应的都是同一个w,所以它们的P(w)是相同的,因此我们只要最大化P(w|c)*P(c)即可。

>> P(c)表示某个正确的词的出现"概率",它可以用"频率"代替。如果我们有一个足够大的文本库,那么这个文本库中每个单词的出现频率,就相当于它的发生概率。某个词的出现频率越高,P(c)就越大。

>> P(w|c)表示在试图拼写c的情况下,出现拼写错误w的概率。为了简化问题,假定两个单词在字形上越接近,就有越可能拼错,P(w|c)就越大。举例来说,相差一个字母的拼法,就比相差两个字母的拼法,发生概率更高。你想拼写单词July,那么错误拼成Julw(相差一个字母)的可能性,就比拼成Jullw高(相差两个字母)

所以,我们只要找到与输入单词在字形上最相近的那些词,再在其中挑出出现频率最高的一个,就能实现的最大值。

----贝叶斯网络----

贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。
贝叶斯网络的有向无环图中的节点表示随机变量,它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接(换言之,连接两个节点的箭头代表此两个随机变量是具有因果关系,或非条件独立)。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。
例如,假设节点E直接影响到节点H,即E→H,则用从E指向H的箭头建立结点E到结点H的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:


贝叶斯网络定义:令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令X = (Xi)i ∈ I为其有向无环图中的某一节点i所代表的随机变量,若节点X的联合概率可以表示成:

则称X为相对于一有向无环图G 的贝叶斯网络。

举例1:


因为a导致b,a和b导致c,所以有:


举例2:


>> smoking表示吸烟,其概率用P(S)表示,lung Cancer表示的肺癌,一个人在吸烟的情况下得肺癌的概率用P(C|S)表示

>> X-ray表示需要照医学上的X光,肺癌可能会导致需要照X光,吸烟也有可能会导致需要照X光(所以smoking也是X-ray的一个因),所以,因吸烟且得肺癌而需要照X光的概率用P(X|C,S)表示。

>> Bronchitis表示支气管炎,一个人在吸烟的情况下得支气管炎的概率用P(B|S),dyspnoea表示呼吸困难,支气管炎可能会导致呼吸困难,肺癌也有可能会导致呼吸困难(所以lung Cancer也是dyspnoea的一个因),因吸烟且得了支气管炎导致呼吸困难的概率用P(D|C,B)表示。

lung Cancer简记为C,Bronchitis简记为B,dyspnoea简记为D,且C = 0表示lung Cancer不发生的概率,C = 1表示lung Cancer发生的概率,B等于0(B不发生)或1(B发生)也类似于C,同样的,D=1表示D发生的概率,D=0表示D不发生的概率,便可得到dyspnoea的一张概率表,如上图的最右下角所示。














原创粉丝点击