Master基于ZooKeeper的High Availability源码实现

来源:互联网 发布:杭州java培训班包住 编辑:程序博客网 时间:2024/04/28 06:24

如果Spark的部署方式选择Standalone,一个采用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure)。Spark可以选用ZooKeeper来实现HA。

ZooKeeper提供了一个Leader Election机制,利用这个机制可以保证虽然集群存在多个Master但是只有一个是Active的,其他的都是Standby,当Active的Master出现故障时,另外的一个Standby Master会被选举出来。由于集群的信息,包括Worker, Driver和Application的信息都已经持久化到文件系统,因此在切换的过程中只会影响新Job的提交,对于正在进行的Job没有任何的影响。加入ZooKeeper的集群整体架构如下图所示。

1. Master的重启策略

Master在启动时,会根据启动参数来决定不同的Master故障重启策略:

1.ZOOKEEPER实现HA

2.FILESYSTEM:实现Master无数据丢失重启,集群的运行时数据会保存到本地/网络文件系统上

3.丢弃所有原来的数据重启

Master::preStart()可以看出这三种不同逻辑的实现。

override def preStart() {      logInfo("Starting Spark master at " + masterUrl)      ...      //persistenceEngine是持久化Worker,Driver和Application信息的,这样在Master重新启动时不会影响      //已经提交Job的运行      persistenceEngine = RECOVERY_MODE match {        case "ZOOKEEPER" =>          logInfo("Persisting recovery state to ZooKeeper")          new ZooKeeperPersistenceEngine(SerializationExtension(context.system), conf)        case "FILESYSTEM" =>          logInfo("Persisting recovery state to directory: " + RECOVERY_DIR)          new FileSystemPersistenceEngine(RECOVERY_DIR, SerializationExtension(context.system))        case _ =>          new BlackHolePersistenceEngine()      }      //leaderElectionAgent负责Leader的选取。      leaderElectionAgent = RECOVERY_MODE match {          case "ZOOKEEPER" =>            context.actorOf(Props(classOf[ZooKeeperLeaderElectionAgent], self, masterUrl, conf))          case _ => // 仅仅有一个Master的集群,那么当前的Master就是Active的            context.actorOf(Props(classOf[MonarchyLeaderAgent], self))        }    } 

RECOVERY_MODE是一个字符串,可以从spark-env.sh中去设置。

val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")  

如果不设置spark.deploy.recoveryMode的话,那么集群的所有运行数据在Master重启是都会丢失,这个结论是从BlackHolePersistenceEngine的实现得出的。

private[spark] class BlackHolePersistenceEngine extends PersistenceEngine {    override def addApplication(app: ApplicationInfo) {}    override def removeApplication(app: ApplicationInfo) {}    override def addWorker(worker: WorkerInfo) {}    override def removeWorker(worker: WorkerInfo) {}    override def addDriver(driver: DriverInfo) {}    override def removeDriver(driver: DriverInfo) {}      override def readPersistedData() = (Nil, Nil, Nil)  }  

它把所有的接口实现为空。PersistenceEngine是一个trait。作为对比,可以看一下ZooKeeper的实现。

class ZooKeeperPersistenceEngine(serialization: Serialization, conf: SparkConf)    extends PersistenceEngine    with Logging  {    val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/master_status"    val zk: CuratorFramework = SparkCuratorUtil.newClient(conf)      SparkCuratorUtil.mkdir(zk, WORKING_DIR)    // 将app的信息序列化到文件WORKING_DIR/app_{app.id}中    override def addApplication(app: ApplicationInfo) {      serializeIntoFile(WORKING_DIR + "/app_" + app.id, app)    }      override def removeApplication(app: ApplicationInfo) {      zk.delete().forPath(WORKING_DIR + "/app_" + app.id)    }  

Spark使用的并不是ZooKeeper的API,而是使用的org.apache.curator.framework.CuratorFramework 和 org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch} 。Curator在ZooKeeper上做了一层很友好的封装。

2. 集群启动参数的配置

简单总结一下参数的设置,通过上述代码的分析,我们知道为了使用ZooKeeper至少应该设置一下参数(实际上,仅仅需要设置这些参数。通过设置spark-env.sh:

spark.deploy.recoveryMode=ZOOKEEPER  spark.deploy.zookeeper.url=zk_server_1:2181,zk_server_2:2181  spark.deploy.zookeeper.dir=/dir     // OR 通过一下方式设置  export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER "  export SPARK_DAEMON_JAVA_OPTS="${SPARK_DAEMON_JAVA_OPTS} -Dspark.deploy.zookeeper.url=zk_server1:2181,zk_server_2:2181"

各个参数的意义:

3. CuratorFramework简介

CuratorFramework极大的简化了ZooKeeper的使用,它提供了high-level的API,并且基于ZooKeeper添加了很多特性,包括

1.自动连接管理:连接到ZooKeeper的Client有可能会连接中断,Curator处理了这种情况,对于Client来说自动重连是透明的。

2.简洁的API:简化了原生态的ZooKeeper的方法,事件等;提供了一个简单易用的接口。

3.Recipe的实现(更多介绍请点击Recipes):

1)Leader的选择

2)共享锁

3)缓存和监控

4)分布式的队列

5)分布式的优先队列

CuratorFrameworks通过CuratorFrameworkFactory来创建线程安全的ZooKeeper的实例。

CuratorFrameworkFactory.newClient()提供了一个简单的方式来创建ZooKeeper的实例,可以传入不同的参数来对实例进行完全的控制。获取实例后,必须通过start()来启动这个实例,在结束时,需要调用close()。

/**      * Create a new client      *      *      * @param connectString list of servers to connect to      * @param sessionTimeoutMs session timeout      * @param connectionTimeoutMs connection timeout      * @param retryPolicy retry policy to use      * @return client      */      public static CuratorFramework newClient(String connectString, int sessionTimeoutMs, int connectionTimeoutMs, RetryPolicy retryPolicy)      {          return builder().              connectString(connectString).              sessionTimeoutMs(sessionTimeoutMs).              connectionTimeoutMs(connectionTimeoutMs).              retryPolicy(retryPolicy).              build();      }  

需要关注的还有两个Recipe:org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch}。
首先看一下LeaderlatchListener,它在LeaderLatch状态变化的时候被通知:

1.在该节点被选为Leader的时候,接口isLeader()会被调用

2.在节点被剥夺Leader的时候,接口notLeader()会被调用

由于通知是异步的,因此有可能在接口被调用的时候,这个状态是准确的,需要确认一下LeaderLatch的hasLeadership()是否的确是true/false。这一点在接下来Spark的实现中可以得到体现。

/** * LeaderLatchListener can be used to be notified asynchronously about when the state of the LeaderLatch has changed. * * Note that just because you are in the middle of one of these method calls, it does not necessarily mean that * hasLeadership() is the corresponding true/false value. It is possible for the state to change behind the scenes * before these methods get called. The contract is that if that happens, you should see another call to the other * method pretty quickly. */  public interface LeaderLatchListener  {    /** * This is called when the LeaderLatch's state goes from hasLeadership = false to hasLeadership = true. * * Note that it is possible that by the time this method call happens, hasLeadership has fallen back to false. If * this occurs, you can expect {@link #notLeader()} to also be called. */    public void isLeader();      /** * This is called when the LeaderLatch's state goes from hasLeadership = true to hasLeadership = false. * * Note that it is possible that by the time this method call happens, hasLeadership has become true. If * this occurs, you can expect {@link #isLeader()} to also be called. */    public void notLeader();  }  

LeaderLatch负责在众多连接到ZooKeeper Cluster的竞争者中选择一个Leader。Leader的选择机制可以看ZooKeeper的具体实现,LeaderLatch这是完成了很好的封装。我们只需要要知道在初始化它的实例后,需要通过

public class LeaderLatch implements Closeable  {      private final Logger log = LoggerFactory.getLogger(getClass());      private final CuratorFramework client;      private final String latchPath;      private final String id;      private final AtomicReference<State> state = new AtomicReference<State>(State.LATENT);      private final AtomicBoolean hasLeadership = new AtomicBoolean(false);      private final AtomicReference<String> ourPath = new AtomicReference<String>();      private final ListenerContainer<LeaderLatchListener> listeners = new ListenerContainer<LeaderLatchListener>();      private final CloseMode closeMode;      private final AtomicReference<Future<?>> startTask = new AtomicReference<Future<?>>();  .  .  .      /**      * Attaches a listener to this LeaderLatch      * <p/>      * Attaching the same listener multiple times is a noop from the second time on.      * <p/>      * All methods for the listener are run using the provided Executor.  It is common to pass in a single-threaded      * executor so that you can be certain that listener methods are called in sequence, but if you are fine with      * them being called out of order you are welcome to use multiple threads.      *      * @param listener the listener to attach      */      public void addListener(LeaderLatchListener listener)      {          listeners.addListener(listener);      }  

通过addListener可以将我们实现的Listener添加到LeaderLatch。在Listener里,我们在两个接口里实现了被选为Leader或者被剥夺Leader角色时的逻辑即可。

4. ZooKeeperLeaderElectionAgent的实现

实际上因为有Curator的存在,Spark实现Master的HA就变得非常简单了,ZooKeeperLeaderElectionAgent实现了接口LeaderLatchListener,在isLeader()确认所属的Master被选为Leader后,向Master发送消息ElectedLeader,Master会将自己的状态改为ALIVE。当noLeader()被调用时,它会向Master发送消息RevokedLeadership时,Master会关闭。

private[spark] class ZooKeeperLeaderElectionAgent(val masterActor: ActorRef,      masterUrl: String, conf: SparkConf)    extends LeaderElectionAgent with LeaderLatchListener with Logging  {    val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/leader_election"    // zk是通过CuratorFrameworkFactory创建的ZooKeeper实例    private var zk: CuratorFramework = _    // leaderLatch:Curator负责选出Leader。    private var leaderLatch: LeaderLatch = _    private var status = LeadershipStatus.NOT_LEADER      override def preStart() {        logInfo("Starting ZooKeeper LeaderElection agent")      zk = SparkCuratorUtil.newClient(conf)      leaderLatch = new LeaderLatch(zk, WORKING_DIR)      leaderLatch.addListener(this)        leaderLatch.start()    } 

在prestart中,启动了leaderLatch来处理选举ZK中的Leader。就如在上节分析的,主要的逻辑在isLeader和noLeader中。

override def isLeader() {    synchronized {      // could have lost leadership by now.      //现在leadership可能已经被剥夺了。。详情参见Curator的实现。      if (!leaderLatch.hasLeadership) {        return      }        logInfo("We have gained leadership")      updateLeadershipStatus(true)    }  }    override def notLeader() {    synchronized {      // 现在可能赋予leadership了。详情参见Curator的实现。      if (leaderLatch.hasLeadership) {        return      }        logInfo("We have lost leadership")      updateLeadershipStatus(false)    }  }  

updateLeadershipStatus的逻辑很简单,就是向Master发送消息。

def updateLeadershipStatus(isLeader: Boolean) {      if (isLeader && status == LeadershipStatus.NOT_LEADER) {        status = LeadershipStatus.LEADER        masterActor ! ElectedLeader      } else if (!isLeader && status == LeadershipStatus.LEADER) {        status = LeadershipStatus.NOT_LEADER        masterActor ! RevokedLeadership      }    }  

5. 设计理念

为了解决Standalone模式下的Master的SPOF,Spark采用了ZooKeeper提供的选举功能。Spark并没有采用ZooKeeper原生的Java API,而是采用了Curator,一个对ZooKeeper进行了封装的框架。采用了Curator后,Spark不用管理与ZooKeeper的连接,这些对于Spark来说都是透明的。Spark仅仅使用了100行代码,就实现了Master的HA。当然了,Spark是站在的巨人的肩膀上。谁又会去重复发明轮子呢?

阅读全文
0 0
原创粉丝点击