《机器学习实战》 CH3 决策树基本原理与实现

来源:互联网 发布:模拟物理实验软件 编辑:程序博客网 时间:2024/06/14 07:11

决策树基本原理可以概括为:通过计算信息增益划分属性集,选择增益最大的属性作为决策树当前节点,依次往下,构建整个决策树。为了计算熵,需要先计算每个属性的信息增益值,通过下面公式计算: 

信息增益计算

创建数据集:

def createDataSet():    dataSet = [ [1, 1, 'yes'],            [1, 1, 'yes'],            [1, 0, 'no'],            [0, 1, 'no'],            [0, 1, 'no']]    labels = ['no surfacing','flippers']    return dataSet, labels
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

计算熵代码片:

def calcShannonEnt(dataSet):    numEntries = len(dataSet) #计算数据集中实例总数    print 'total numEntries = %d' % numEntries    labelCounts = {}    #创建数据字典,计算每个label出现的次数    for featVec in dataSet: #the the number of unique elements and their occurance        currentLabel = featVec[-1] # -1表示获取最后一个元素,即label        if currentLabel not in labelCounts.keys():             labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1    for key in labelCounts.keys():#打印字典        print key,':',labelCounts[key]    shannonEnt = 0.0    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob * log(prob,2) #log base 2    print 'shannonEnt = ',shannonEnt    return shannonEnt
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

labelCounts 是存储所有label个数的字典,key为label,key_value为label个数。for循环计算label个数,并打印出字典值。函数返回熵值。

myDat, labels = createDataSet() 
shannonEnt = calcShannonEnt(myDat) 
计算结果为: 
numEntries = 5 
yes : 2 
no : 3 
shannonEnt = 0.970950594455 
熵值越高,数据集越混乱(label越多,越混乱)。试着改变label值可以观察熵值的变化。 
myDat[0][-1] = ‘maybe’ 
shannonEnt = calcShannonEnt(myDat) 
输出结果: 
numEntries = 5 
maybe : 1 
yes : 1 
no : 3 
shannonEnt = 1.37095059445 
得到熵值后即可计算各属性信息增益值,选取最大信息增益值作为当前分类节点,知道分类结束。

splitDataSet函数参数为:dataSet为输入数据集,包含你label值;axis为每行的第axis元素,对应属性特征;value为对应元素的值,即特征的值。 
函数功能:找出所有行中第axis个元素值为value的行,去掉该元素,返回对应行矩阵。 
当需要按照某个特征值划分数据时,需要将所有符合要求的元素抽取出来,便于计算信息增益。

def splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet: #dataset中各元素是列表,遍历每个列表        if featVec[axis] == value: #找出第axis元素为value的行            reducedFeatVec = featVec[:axis]   #抽取符合特征的数据            reducedFeatVec.extend(featVec[axis+1:]) #把抽取出该特征以后的所有特征组成一个列表            retDataSet.append(reducedFeatVec)   #创建抽取该特征以后的dataset    print 'retDataSet = ',retDataSet    return retDataSet
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

例如: 
splitDataSet(myDat,0,1) 
执行结果: 
dataSet = [[1, 1, ‘yes’], [1, 1, ‘yes’], [1, 0, ‘no’], [0, 1, ‘no’], [0, 1, ‘no’]] 
retDataSet = [[1, ‘yes’], [1, ‘yes’], [0, ‘no’]] 
splitDataSet(myDat,1,1) 
执行结果: 
dataSet = [[1, 1, ‘yes’], [1, 1, ‘yes’], [1, 0, ‘no’], [0, 1, ‘no’], [0, 1, ‘no’]] 
retDataSet = [[1, ‘yes’], [1, ‘yes’], [0, ‘no’], [0, ‘no’]]

为了便于查看计算过程,我重新生成了一个dataset用于计算信息增益,如下:

def createDataSet_me():    dataSet = [     ['sunny',   'busy',     'male',     'no'],            ['rainy',   'not busy', 'female',   'no'],            ['cloudy',  'relax',    'male',     'maybe'],            ['sunny',   'relax',    'male',     'yes'],            ['cloudy',  'not busy', 'male',     'maybe'],            ['sunny',   'not busy', 'female',   'yes']]    return dataSet
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

基本含义是根据天气、是否忙碌以及性别,判断是否出门旅行。计算信息增益代码如下

def chooseBestFeatureToSplit(dataSet):    numFeatures = len(dataSet[0]) - 1       #获取属性个数,最后一列为label    print 'numFeatures = ',numFeatures    baseEntropy = calcShannonEnt(dataSet)   #计算数据集中的原始香农熵    print 'the baseEntropy is :',baseEntropy    bestInfoGain = 0.0    bestFeature = 0 #-1    #迭代所有属性    for i in range(numFeatures):        #featList,获取某一列属性        print 'in feature %d' % i        featList = [example[i] for example in dataSet] #遍历所有属性        print 'in feature %d,value List : ' % i,featList        #获取属性的值        #集合元素中各个值互不相同,从列表中创建集合是得到唯一元素值最快的方法        uniqueVals = set(featList) #python的set是一个无序不重复元素集        print 'uniqueVals:',uniqueVals        newEntropy = 0.0        #计算每一个属性值的熵,并求和        for value in uniqueVals:             subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob * calcShannonEnt(subDataSet)        print '\tnewEntropy of feature %d is : ' % i,newEntropy        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy        print '\tinfoGain : ',infoGain        if (infoGain > bestInfoGain):       #compare this to the best gain so far            bestInfoGain = infoGain         #if better than current best, set to best            bestFeature = i                 #特征i    print 'bestFeature:',bestFeature    return bestFeature  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

先获取属性个数,dataset最后一列为label,所以需要-1。 
for循环嵌套即用来计算信息增益。 
外层for循环用于遍历所有特征。featList = [example[i] for example in dataSet] 语句用于查找该属性下所有属性值,并使用set函数对属性值列表进行唯一化,防止重复计算。 
内侧for循环用于遍历当前属性下所有属性值。计算每一个属性值对应的熵值并求和。结果与原始熵值的差即为信息增益。 
信息增益越大,说明该特征越利于分类,即当前分类节点应该选择该属性。 
函数返回用来分类的属性标号。 
简单实验: 
DataSet_me = createDataSet_me(); 
bestFeature = chooseBestFeatureToSplit(DataSet_me) 
输出: 
in feature 0 
in feature 0,value List : [‘sunny’, ‘rainy’, ‘cloudy’, ‘sunny’, ‘cloudy’, ‘sunny’] 
uniqueVals: set([‘rainy’, ‘sunny’, ‘cloudy’]) 
newEntropy of feature 0 is : 0.459147917027 
infoGain : 1.12581458369 
in feature 1 
in feature 1,value List : [‘busy’, ‘not busy’, ‘relax’, ‘relax’, ‘not busy’, ‘not busy’] 
uniqueVals: set([‘not busy’, ‘busy’, ‘relax’]) 
newEntropy of feature 1 is : 1.12581458369 
infoGain : 0.459147917027 
in feature 2 
in feature 2,value List : [‘male’, ‘female’, ‘male’, ‘male’, ‘male’, ‘female’] 
uniqueVals: set([‘male’, ‘female’]) 
newEntropy of feature 2 is : 1.33333333333 
infoGain : 0.251629167388 
bestFeature: 0 
可得属性0的信息增益最大,用属性0来分类最好。

知道如何得到最佳的属性划分节点,即可递归调用该函数,创建决策树。结束递归的条件是:1)遍历完所有要划分的属性;2)分支下所有实例都具有相同label。 
函数majorityCnt用于:如果数据集已经处理了所有属性,但是label并不唯一,这是使用多数表决,决定label。 
比如上述dataset中多了以下几个元素 
[‘sunny’, ‘busy’, ‘male’, ‘no’] 
[‘sunny’, ‘busy’, ‘male’, ‘no’] 
[‘sunny’, ‘busy’, ‘male’, ‘no’] 
[‘sunny’, ‘busy’, ‘male’, ‘yes’] 
这是就需要多数表决来决定label号。 
输入参数classList即为dataset的所有label号。sorted即对字典按降序排列,返回label次数最多的label。

def majorityCnt(classList):    classCount={} #创建字典,返回出现频率最高label    for vote in classList:        if vote not in classCount.keys():             classCount[vote] = 0        classCount[vote] += 1    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

为了便于测试,重新创建数据集,如下:

def createDataSet2():    dataSet = [     ['sunny',   'busy',     'male',     'no'],            ['sunny',   'busy',     'male',     'no'],            ['sunny',   'busy',     'female',   'yes'],            ['rainy',   'not busy', 'female',   'no'],            ['cloudy',  'relax',    'male',     'maybe'],            ['sunny',   'relax',    'male',     'yes'],            ['cloudy',  'not busy', 'male',     'maybe'],            ['sunny',   'not busy', 'female',   'yes']]    features =  ['weather', 'busy or not', 'gender']    return dataSet, features
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

feature为对应属性名。 
下面构造决策树代码,输入dataset和label:

def createTree(dataSet,labels):    classList = [example[-1] for example in dataSet]    print 'classList:',classList  #获取所有label列表    #停止迭代1:classList中所有label相同,直接返回该label    if classList.count(classList[0]) == len(classList):         return classList[0]    #停止迭代2:用完了所有特征仍然不能将数据集划分成仅包含唯一类别的分组    if len(dataSet[0]) == 1:         return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    #print 'bestFeat:',bestFeat    #print 'bestFeatLabel:',bestFeatLabel    myTree = {bestFeatLabel:{}}    del(labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals:        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)    print 'myTree = ',myTree    return myTree
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

输出结果为: 
myTree = {‘weather’: {‘rainy’: ‘no’, ‘sunny’: {‘busy or not’: {‘not busy’: ‘yes’, ‘busy’: {‘gender’: {‘male’: ‘no’, ‘female’: ‘yes’}}, ‘relax’: ‘yes’}}, ‘cloudy’: ‘maybe’}}

下面classify用于对给定测试向量进行分类:

def classify(inputTree,featLabels,testVec):    print 'featLabels: ',featLabels    print 'testVec: ',testVec    firstStr = inputTree.keys()[0] #获取第一个属性    print 'firstStr:',firstStr    secondDict = inputTree[firstStr]    print 'secondDict: ',secondDict    #找到属性在待测试向量中的ID    featIndex = featLabels.index(firstStr)    key = testVec[featIndex]    valueOfFeat = secondDict[key]    if isinstance(valueOfFeat, dict): #        classLabel = classify(valueOfFeat, featLabels, testVec)    else: classLabel = valueOfFeat    print 'classLabel:',classLabel    return classLabel
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

也是递归调用classify函数,依次对输入的属性值通过决策树进行判定,得到最终的label。 
例如

feature_label = ['weather','gender','busy or not']test_vector = ['rainy','female','busy']classify(MyTree,feature_label,test_vector)
  • 1
  • 2
  • 3

输出结果: 
featLabels: [‘weather’, ‘gender’, ‘busy or not’] 
testVec: [‘rainy’, ‘female’, ‘busy’] 
firstStr: weather 
secondDict: {‘rainy’: ‘no’, ‘sunny’: {‘busy or not’: {‘not busy’: ‘yes’, ‘busy’: {‘gender’: {‘male’: ‘no’, ‘female’: ‘yes’}}, ‘relax’: ‘yes’}}, ‘cloudy’: ‘maybe’}
classLabel: no

原创粉丝点击