Vector原理讲解

来源:互联网 发布:淘宝店发货地址和退货 编辑:程序博客网 时间:2024/06/16 07:23

一. Vector概述

本节基于JDK1.8.0_60

  1. Vector是动态数组实现的List,跟ArrayList一样,其容量能自动增长
  2. Vector是JDK1.0引入了,它的很多实现方法都加入了同步语句,因此是线程安全的
  3. Vector适用于快速访问和修改,不适用随机插入和删除
  4. Vector初始容量大小为10,扩容由初始容量和capacityIncrement共同决定
  5. Vector元素允许为null
  6. Vector现在已经基本不再使用,如果不需要线程安全的实现,推荐使用ArrayList代替Vector
  7. 源码解析:Vector源码
public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable,java.io.Serializable

这里写图片描述

二. Vector总结

2.1 Vector存储结构

// 存储元素protected Object[] elementData;// 实际元素个数protected int elementCount;// 扩容时增加量,大于0增加capacityIncrement,否则翻倍protected int capacityIncrement;

这里写图片描述

2.2 Vector初始化

// 默认实现public Vector() {    this(10);}public Vector(int initialCapacity) {    this(initialCapacity, 0);}/** * @param  initialCapacity   初始容量大小 * @param  capacityIncrement 扩容增加值,大于0增加capacityIncrement,否则翻倍 */public Vector(int initialCapacity, int capacityIncrement) {    super();    if (initialCapacity < 0)        throw new IllegalArgumentException("Illegal Capacity: "+                                           initialCapacity);    this.elementData = new Object[initialCapacity];    this.capacityIncrement = capacityIncrement;}public Vector(Collection<? extends E> c) {    elementData = c.toArray();    elementCount = elementData.length;    if (elementData.getClass() != Object[].class)        elementData = Arrays.copyOf(elementData, elementCount, Object[].class);}

2.3 Vector扩容

Vector在每次增加元素时,都要确保足够的容量。当容量不足以容纳当前的元素个数时,就先看构造方法中传入的容量增长量参数CapacityIncrement是否为0

  1. 如果不为0,就设置新的容量为旧容量加上容量增长量
  2. 如果为0,就设置新的容量为旧的容量的2倍
  3. 如果设置后的新容量还不够,则直接新容量设置为传入的参数(也就是所需的容量)
  4. 而后同样用Arrays.copyof()方法将元素拷贝到新的数组
newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity);
public synchronized void ensureCapacity(int minCapacity) {    if (minCapacity > 0) {        modCount++;        ensureCapacityHelper(minCapacity);    }}private void ensureCapacityHelper(int minCapacity) {    if (minCapacity - elementData.length > 0)// 需要扩容        grow(minCapacity);}private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;private void grow(int minCapacity) {    int oldCapacity = elementData.length;    // 扩容大小?capacityIncrement : 翻倍    int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity);    if (newCapacity - minCapacity < 0)        newCapacity = minCapacity;    if (newCapacity - MAX_ARRAY_SIZE > 0)        newCapacity = hugeCapacity(minCapacity);    elementData = Arrays.copyOf(elementData, newCapacity);}private static int hugeCapacity(int minCapacity) {    if (minCapacity < 0) // overflow        throw new OutOfMemoryError();    return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;}
2.3.1 Vector一次扩容大小
int oldCapacity = elementData.length;    // 扩容大小?capacityIncrement : 翻倍    int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity);

Vector扩容大小由当前元素个数oldCapacity = elementData.length与属性capacityIncrement共同决定的:
- capacityIncrement <= 0,扩容大小为oldCapacity,即翻倍
- oldCapacity > 0,扩容大小为oldCapacity的大小
这里写图片描述

2.3.2 Vector容量大小限制

JDK6及之前的版本中扩容没有限制容量大小,JDK8中限制了容量大小最大为Integer.MAX_VALU(2^31 - 1)

三. Iterator与ListIterator

JDK1.8.0_60 Vector中实现了两种迭代器Iterator:
- 子类AbstractList中实现的Iterator - Itr
- Vector中重写了子类AbstractList中的ListIterator - ListItr
Iterator只能实现顺序向后遍历,ListIterator可实现顺序向后遍历和逆向(顺序向前)遍历
Iterator只能实现remove操作,ListIterator可以实现remove操作,add操作,set操作

四. Fail-Fast机制

final void checkForComodification() {    if (modCount != expectedModCount)        throw new ConcurrentModificationException();}

Vector也采用了快速失败的机制,通过记录modCount参数来实现。在面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。
它是Java集合的一种错误检测机制。当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast机制。记住是有可能,而不是一定。例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast机制。

五. Vector与ArrayList比较

Vector与ArrayList的最大区别就是Vector是线程安全的,而ArrayList不是线程安全的。另外区别还有:

  1. ArrayList不可以设置扩展的容量,默认1.5倍
  2. Vector可以设置扩展的容量,如果没有设置,默认2倍
  3. ArrayList的无参构造方法中初始容量为0(初次调用add()会更新为10)
  4. Vector的无参构造方法中初始容量为10
  5. Vector线程安全
  6. ArrayList线程不安全

六. Collections.synchronizedList和Vector比较

Vector是java1.0开始使用的,而集合框架从JDK1.2开始加入。
SynchronizedList和Vector最主要的区别:

  1. SynchronizedList有很好的扩展和兼容功能。他可以将所有的List的子类转成线程安全的类
  2. 使用SynchronizedList的时候,进行遍历时要手动进行同步处理
  3. SynchronizedList可以指定锁定的对象
    SynchronizedList和Vector的区别
    CopyOnWriteArrayList与Collections.synchronizedList的性能对比
package com.src.collection.list;import java.util.ArrayList;import java.util.Collections;import java.util.Iterator;import java.util.List;import java.util.ListIterator;public class SynchronizedListTest {    public static void main(String[] args) {        ArrayList<Integer> arrayList = new ArrayList<>();        int len = 9000000;        for (int i = 0; i < len; i++) {            arrayList.add(i);        }        System.out.println(len + "个数据: ");        List<Integer> list = Collections.synchronizedList(arrayList);        long start = System.currentTimeMillis();        for (int size = list.size(), i = 0; i < size; i++) {            int sta = list.get(i);        }        System.out.println("for循环遍历耗时: " + (System.currentTimeMillis()-start) + "毫秒!");        long second = System.currentTimeMillis();        Iterator<Integer> iterator = list.iterator();        while (iterator.hasNext()) {            int sec = iterator.next();        }        System.out.println("迭代器Iterator遍历耗时: " + (System.currentTimeMillis()-second) + "毫秒!");        long third = System.currentTimeMillis();        for (int i : list) {// 也是Iterator实现的            int thi = i;        }        System.out.println("foreach循环遍历耗时: " + (System.currentTimeMillis()-third) + "毫秒!");        long fourth = System.currentTimeMillis();        ListIterator<Integer> listIterator = list.listIterator();        while (listIterator.hasNext()) {            int fou = listIterator.next();        }        System.out.println("迭代器ListIterator循环遍历耗时: " + (System.currentTimeMillis()-fourth) + "毫秒!");        long firth = System.currentTimeMillis();        list.forEach(integer -> {            int fir = integer;        });        System.out.println("forEach循环遍历耗时: "+ (System.currentTimeMillis()-firth) + "毫秒!");    }}
9000个数据: for循环遍历耗时: 1毫秒!迭代器Iterator遍历耗时: 2毫秒!foreach循环遍历耗时: 1毫秒!迭代器ListIterator循环遍历耗时: 3毫秒!forEach循环遍历耗时: 84毫秒!90000个数据: for循环遍历耗时: 6毫秒!迭代器Iterator遍历耗时: 5毫秒!foreach循环遍历耗时: 3毫秒!迭代器ListIterator循环遍历耗时: 3毫秒!forEach循环遍历耗时: 96毫秒!900000个数据: for循环遍历耗时: 32毫秒!迭代器Iterator遍历耗时: 21毫秒!foreach循环遍历耗时: 13毫秒!迭代器ListIterator循环遍历耗时: 17毫秒!forEach循环遍历耗时: 97毫秒!9000000个数据: for循环遍历耗时: 265毫秒!迭代器Iterator遍历耗时: 33毫秒!foreach循环遍历耗时: 35毫秒!迭代器ListIterator循环遍历耗时: 33毫秒!forEach循环遍历耗时: 107毫秒!

七. Vector遍历比较

package com.src.collection.list;import java.util.Enumeration;import java.util.Iterator;import java.util.ListIterator;import java.util.Vector;/** * Vector遍历效率对比 * JDK1.8.0_60 * */public class VectorTest {    public static void main(String[] args) {        Vector<Integer> vector = new Vector<>();        int len = 9000;        for (int i = 0; i < len; i++) {            vector.add(i);        }        System.out.println(len + "个数据: Vector方法加了synchronized关键字!");        long start = System.currentTimeMillis();        for (int size = vector.size(), i = 0; i < size; i++) {            int sta = vector.get(i);        }        System.out.println("for循环遍历耗时: " + (System.currentTimeMillis()-start) + "毫秒!");        long second = System.currentTimeMillis();        Iterator<Integer> iterator = vector.iterator();        while (iterator.hasNext()) {            int sec = iterator.next();        }        System.out.println("迭代器Iterator遍历耗时: " + (System.currentTimeMillis()-second) + "毫秒!");        long third = System.currentTimeMillis();        for (int i : vector) {// 也是Iterator实现的            int thi = i;        }        System.out.println("foreach循环遍历耗时: " + (System.currentTimeMillis()-third) + "毫秒!");        long fourth = System.currentTimeMillis();        ListIterator<Integer> listIterator = vector.listIterator();        while (listIterator.hasNext()) {            int fou = listIterator.next();        }        System.out.println("迭代器ListIterator循环遍历耗时: " + (System.currentTimeMillis()-fourth) + "毫秒!");        long firth = System.currentTimeMillis();        vector.forEach(integer -> {            int fir = integer;        });        System.out.println("forEach循环遍历耗时: "+ (System.currentTimeMillis()-firth) + "毫秒!");        long sixth = System.currentTimeMillis();        Enumeration<Integer> elements = vector.elements();        while (elements.hasMoreElements()) {            int six = elements.nextElement();        }        System.out.println("Enumeration循环耗时: " + (System.currentTimeMillis()-sixth) + "毫秒");    }}

运行结果(每次运行都有些差异):

9000个数据: Vector方法加了synchronized关键字!for循环遍历耗时: 1毫秒!迭代器Iterator遍历耗时: 3毫秒!foreach循环遍历耗时: 2毫秒!迭代器ListIterator循环遍历耗时: 2毫秒!forEach循环遍历耗时: 75毫秒!Enumeration循环耗时: 2毫秒90000个数据: Vector方法加了synchronized关键字!for循环遍历耗时: 3毫秒!迭代器Iterator遍历耗时: 7毫秒!foreach循环遍历耗时: 4毫秒!迭代器ListIterator循环遍历耗时: 4毫秒!forEach循环遍历耗时: 81毫秒!Enumeration循环耗时: 7毫秒900000个数据: Vector方法加了synchronized关键字!for循环遍历耗时: 35毫秒!迭代器Iterator遍历耗时: 34毫秒!foreach循环遍历耗时: 33毫秒!迭代器ListIterator循环遍历耗时: 32毫秒!forEach循环遍历耗时: 87毫秒!Enumeration循环耗时: 27毫秒9000000个数据: Vector方法加了synchronized关键字!for循环遍历耗时: 250毫秒!迭代器Iterator遍历耗时: 258毫秒!foreach循环遍历耗时: 256毫秒!迭代器ListIterator循环遍历耗时: 262毫秒!forEach循环遍历耗时: 93毫秒!Enumeration循环耗时: 173毫秒

八. Vector源码

package java.util;import java.util.function.Consumer;import java.util.function.Predicate;import java.util.function.UnaryOperator;public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable {    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;    protected Object[] elementData;    protected int elementCount;    protected int capacityIncrement;    private static final long serialVersionUID = -2767605614048989439L;    public Vector(int initialCapacity, int capacityIncrement) {        super();        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);        this.elementData = new Object[initialCapacity];        this.capacityIncrement = capacityIncrement;    }    public Vector(int initialCapacity) {        this(initialCapacity, 0);    }    public Vector() {        this(10);    }    public Vector(Collection<? extends E> c) {        elementData = c.toArray();        elementCount = elementData.length;        // c.toArray might (incorrectly) not return Object[] (see 6260652)        if (elementData.getClass() != Object[].class)            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);    }    public synchronized void copyInto(Object[] anArray) {        System.arraycopy(elementData, 0, anArray, 0, elementCount);    }    public synchronized void trimToSize() {        modCount++;        int oldCapacity = elementData.length;        if (elementCount < oldCapacity) {            elementData = Arrays.copyOf(elementData, elementCount);        }    }    public synchronized void setSize(int newSize) {        modCount++;        if (newSize > elementCount) {            ensureCapacityHelper(newSize);        } else {            for (int i = newSize ; i < elementCount ; i++) {                elementData[i] = null;            }        }        elementCount = newSize;    }    public synchronized void ensureCapacity(int minCapacity) {        if (minCapacity > 0) {            modCount++;            ensureCapacityHelper(minCapacity);        }    }    private void ensureCapacityHelper(int minCapacity) {        // overflow-conscious code        if (minCapacity - elementData.length > 0)            grow(minCapacity);    }    private void grow(int minCapacity) {        // overflow-conscious code        int oldCapacity = elementData.length;        int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity);        if (newCapacity - minCapacity < 0)            newCapacity = minCapacity;        if (newCapacity - MAX_ARRAY_SIZE > 0)            newCapacity = hugeCapacity(minCapacity);        elementData = Arrays.copyOf(elementData, newCapacity);    }    private static int hugeCapacity(int minCapacity) {        if (minCapacity < 0) // overflow            throw new OutOfMemoryError();        return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;    }    public synchronized int capacity() {        return elementData.length;    }    public synchronized int size() {        return elementCount;    }    public synchronized boolean isEmpty() {        return elementCount == 0;    }    public Enumeration<E> elements() {        return new Enumeration<E>() {            int count = 0;            public boolean hasMoreElements() {                return count < elementCount;            }            public E nextElement() {                synchronized (Vector.this) {                    if (count < elementCount) {                        return elementData(count++);                    }                }                throw new NoSuchElementException("Vector Enumeration");            }        };    }    public boolean contains(Object o) {        return indexOf(o, 0) >= 0;    }    public int indexOf(Object o) {        return indexOf(o, 0);    }    public synchronized int indexOf(Object o, int index) {        if (o == null) {            for (int i = index ; i < elementCount ; i++)                if (elementData[i]==null)                    return i;        } else {            for (int i = index ; i < elementCount ; i++)                if (o.equals(elementData[i]))                    return i;        }        return -1;    }    public synchronized int lastIndexOf(Object o) {        return lastIndexOf(o, elementCount-1);    }    public synchronized int lastIndexOf(Object o, int index) {        if (index >= elementCount)            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);        if (o == null) {            for (int i = index; i >= 0; i--)                if (elementData[i]==null)                    return i;        } else {            for (int i = index; i >= 0; i--)                if (o.equals(elementData[i]))                    return i;        }        return -1;    }    public synchronized E elementAt(int index) {        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);        }        return elementData(index);    }    public synchronized E firstElement() {        if (elementCount == 0) {            throw new NoSuchElementException();        }        return elementData(0);    }    public synchronized E lastElement() {        if (elementCount == 0) {            throw new NoSuchElementException();        }        return elementData(elementCount - 1);    }    public synchronized void setElementAt(E obj, int index) {        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);        }        elementData[index] = obj;    }    public synchronized void removeElementAt(int index) {        modCount++;        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);        }        else if (index < 0) {            throw new ArrayIndexOutOfBoundsException(index);        }        int j = elementCount - index - 1;        if (j > 0) {            System.arraycopy(elementData, index + 1, elementData, index, j);        }        elementCount--;        elementData[elementCount] = null; /* to let gc do its work */    }    public synchronized void insertElementAt(E obj, int index) {        modCount++;        if (index > elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount);        }        ensureCapacityHelper(elementCount + 1);        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);        elementData[index] = obj;        elementCount++;    }    public synchronized void addElement(E obj) {        modCount++;        ensureCapacityHelper(elementCount + 1);        elementData[elementCount++] = obj;    }    public synchronized boolean removeElement(Object obj) {        modCount++;        int i = indexOf(obj);        if (i >= 0) {            removeElementAt(i);            return true;        }        return false;    }    public synchronized void removeAllElements() {        modCount++;        // Let gc do its work        for (int i = 0; i < elementCount; i++)            elementData[i] = null;        elementCount = 0;    }    public synchronized Object clone() {        try {            @SuppressWarnings("unchecked")                Vector<E> v = (Vector<E>) super.clone();            v.elementData = Arrays.copyOf(elementData, elementCount);            v.modCount = 0;            return v;        } catch (CloneNotSupportedException e) {            // this shouldn't happen, since we are Cloneable            throw new InternalError(e);        }    }    public synchronized Object[] toArray() {        return Arrays.copyOf(elementData, elementCount);    }    @SuppressWarnings("unchecked")    public synchronized <T> T[] toArray(T[] a) {        if (a.length < elementCount)            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());        System.arraycopy(elementData, 0, a, 0, elementCount);        if (a.length > elementCount)            a[elementCount] = null;        return a;    }    @SuppressWarnings("unchecked")    E elementData(int index) {        return (E) elementData[index];    }    public synchronized E get(int index) {        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        return elementData(index);    }    public synchronized E set(int index, E element) {        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        E oldValue = elementData(index);        elementData[index] = element;        return oldValue;    }    public synchronized boolean add(E e) {        modCount++;        ensureCapacityHelper(elementCount + 1);        elementData[elementCount++] = e;        return true;    }    public boolean remove(Object o) {        return removeElement(o);    }    public void add(int index, E element) {        insertElementAt(element, index);    }    public synchronized E remove(int index) {        modCount++;        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        E oldValue = elementData(index);        int numMoved = elementCount - index - 1;        if (numMoved > 0)            System.arraycopy(elementData, index+1, elementData, index, numMoved);        elementData[--elementCount] = null; // Let gc do its work        return oldValue;    }    public void clear() {        removeAllElements();    }    public synchronized boolean containsAll(Collection<?> c) {        return super.containsAll(c);    }    public synchronized boolean addAll(Collection<? extends E> c) {        modCount++;        Object[] a = c.toArray();        int numNew = a.length;        ensureCapacityHelper(elementCount + numNew);        System.arraycopy(a, 0, elementData, elementCount, numNew);        elementCount += numNew;        return numNew != 0;    }    public synchronized boolean removeAll(Collection<?> c) {        return super.removeAll(c);    }    public synchronized boolean retainAll(Collection<?> c) {        return super.retainAll(c);    }    public synchronized boolean addAll(int index, Collection<? extends E> c) {        modCount++;        if (index < 0 || index > elementCount)            throw new ArrayIndexOutOfBoundsException(index);        Object[] a = c.toArray();        int numNew = a.length;        ensureCapacityHelper(elementCount + numNew);        int numMoved = elementCount - index;        if (numMoved > 0)            System.arraycopy(elementData, index, elementData, index + numNew, numMoved);        System.arraycopy(a, 0, elementData, index, numNew);        elementCount += numNew;        return numNew != 0;    }    public synchronized boolean equals(Object o) {        return super.equals(o);    }    public synchronized int hashCode() {        return super.hashCode();    }    public synchronized String toString() {        return super.toString();    }    public synchronized List<E> subList(int fromIndex, int toIndex) {        return Collections.synchronizedList(super.subList(fromIndex, toIndex), this);    }    protected synchronized void removeRange(int fromIndex, int toIndex) {        modCount++;        int numMoved = elementCount - toIndex;        System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved);        // Let gc do its work        int newElementCount = elementCount - (toIndex-fromIndex);        while (elementCount != newElementCount)            elementData[--elementCount] = null;    }    private void writeObject(java.io.ObjectOutputStream s)            throws java.io.IOException {        final java.io.ObjectOutputStream.PutField fields = s.putFields();        final Object[] data;        synchronized (this) {            fields.put("capacityIncrement", capacityIncrement);            fields.put("elementCount", elementCount);            data = elementData.clone();        }        fields.put("elementData", data);        s.writeFields();    }    public synchronized ListIterator<E> listIterator(int index) {        if (index < 0 || index > elementCount)            throw new IndexOutOfBoundsException("Index: "+index);        return new ListItr(index);    }    public synchronized ListIterator<E> listIterator() {        return new ListItr(0);    }    public synchronized Iterator<E> iterator() {        return new Itr();    }    private class Itr implements Iterator<E> {        int cursor;       // index of next element to return        int lastRet = -1; // index of last element returned; -1 if no such        int expectedModCount = modCount;        public boolean hasNext() {            return cursor != elementCount;        }        public E next() {            synchronized (Vector.this) {                checkForComodification();                int i = cursor;                if (i >= elementCount)                    throw new NoSuchElementException();                cursor = i + 1;                return elementData(lastRet = i);            }        }        public void remove() {            if (lastRet == -1)                throw new IllegalStateException();            synchronized (Vector.this) {                checkForComodification();                Vector.this.remove(lastRet);                expectedModCount = modCount;            }            cursor = lastRet;            lastRet = -1;        }        @Override        public void forEachRemaining(Consumer<? super E> action) {            Objects.requireNonNull(action);            synchronized (Vector.this) {                final int size = elementCount;                int i = cursor;                if (i >= size) {                    return;                }                @SuppressWarnings("unchecked")                final E[] elementData = (E[]) Vector.this.elementData;                if (i >= elementData.length) {                    throw new ConcurrentModificationException();                }                while (i != size && modCount == expectedModCount) {                    action.accept(elementData[i++]);                }                // update once at end of iteration to reduce heap write traffic                cursor = i;                lastRet = i - 1;                checkForComodification();            }        }        final void checkForComodification() {            if (modCount != expectedModCount)                throw new ConcurrentModificationException();        }    }    final class ListItr extends Itr implements ListIterator<E> {        ListItr(int index) {            super();            cursor = index;        }        public boolean hasPrevious() {            return cursor != 0;        }        public int nextIndex() {            return cursor;        }        public int previousIndex() {            return cursor - 1;        }        public E previous() {            synchronized (Vector.this) {                checkForComodification();                int i = cursor - 1;                if (i < 0)                    throw new NoSuchElementException();                cursor = i;                return elementData(lastRet = i);            }        }        public void set(E e) {            if (lastRet == -1)                throw new IllegalStateException();            synchronized (Vector.this) {                checkForComodification();                Vector.this.set(lastRet, e);            }        }        public void add(E e) {            int i = cursor;            synchronized (Vector.this) {                checkForComodification();                Vector.this.add(i, e);                expectedModCount = modCount;            }            cursor = i + 1;            lastRet = -1;        }    }    @Override    public synchronized void forEach(Consumer<? super E> action) {        Objects.requireNonNull(action);        final int expectedModCount = modCount;        @SuppressWarnings("unchecked")        final E[] elementData = (E[]) this.elementData;        final int elementCount = this.elementCount;        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {            action.accept(elementData[i]);        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }    }    @Override    @SuppressWarnings("unchecked")    public synchronized boolean removeIf(Predicate<? super E> filter) {        Objects.requireNonNull(filter);        // figure out which elements are to be removed        // any exception thrown from the filter predicate at this stage        // will leave the collection unmodified        int removeCount = 0;        final int size = elementCount;        final BitSet removeSet = new BitSet(size);        final int expectedModCount = modCount;        for (int i=0; modCount == expectedModCount && i < size; i++) {            @SuppressWarnings("unchecked")            final E element = (E) elementData[i];            if (filter.test(element)) {                removeSet.set(i);                removeCount++;            }        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        // shift surviving elements left over the spaces left by removed elements        final boolean anyToRemove = removeCount > 0;        if (anyToRemove) {            final int newSize = size - removeCount;            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {                i = removeSet.nextClearBit(i);                elementData[j] = elementData[i];            }            for (int k=newSize; k < size; k++) {                elementData[k] = null;  // Let gc do its work            }            elementCount = newSize;            if (modCount != expectedModCount) {                throw new ConcurrentModificationException();            }            modCount++;        }        return anyToRemove;    }    @Override    @SuppressWarnings("unchecked")    public synchronized void replaceAll(UnaryOperator<E> operator) {        Objects.requireNonNull(operator);        final int expectedModCount = modCount;        final int size = elementCount;        for (int i=0; modCount == expectedModCount && i < size; i++) {            elementData[i] = operator.apply((E) elementData[i]);        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        modCount++;    }    @SuppressWarnings("unchecked")    @Override    public synchronized void sort(Comparator<? super E> c) {        final int expectedModCount = modCount;        Arrays.sort((E[]) elementData, 0, elementCount, c);        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        modCount++;    }    @Override    public Spliterator<E> spliterator() {        return new VectorSpliterator<>(this, null, 0, -1, 0);    }    /** Similar to ArrayList Spliterator */    static final class VectorSpliterator<E> implements Spliterator<E> {        private final Vector<E> list;        private Object[] array;        private int index; // current index, modified on advance/split        private int fence; // -1 until used; then one past last index        private int expectedModCount; // initialized when fence set        /** Create new spliterator covering the given  range */        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,                          int expectedModCount) {            this.list = list;            this.array = array;            this.index = origin;            this.fence = fence;            this.expectedModCount = expectedModCount;        }        private int getFence() { // initialize on first use            int hi;            if ((hi = fence) < 0) {                synchronized(list) {                    array = list.elementData;                    expectedModCount = list.modCount;                    hi = fence = list.elementCount;                }            }            return hi;        }        public Spliterator<E> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid) ? null :                new VectorSpliterator<E>(list, array, lo, index = mid,                                         expectedModCount);        }        @SuppressWarnings("unchecked")        public boolean tryAdvance(Consumer<? super E> action) {            int i;            if (action == null)                throw new NullPointerException();            if (getFence() > (i = index)) {                index = i + 1;                action.accept((E)array[i]);                if (list.modCount != expectedModCount)                    throw new ConcurrentModificationException();                return true;            }            return false;        }        @SuppressWarnings("unchecked")        public void forEachRemaining(Consumer<? super E> action) {            int i, hi; // hoist accesses and checks from loop            Vector<E> lst; Object[] a;            if (action == null)                throw new NullPointerException();            if ((lst = list) != null) {                if ((hi = fence) < 0) {                    synchronized(lst) {                        expectedModCount = lst.modCount;                        a = array = lst.elementData;                        hi = fence = lst.elementCount;                    }                }                else                    a = array;                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {                    while (i < hi)                        action.accept((E) a[i++]);                    if (lst.modCount == expectedModCount)                        return;                }            }            throw new ConcurrentModificationException();        }        public long estimateSize() {            return (long) (getFence() - index);        }        public int characteristics() {            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;        }    }}